BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 16346339)

  • 1. Production of Methyl Ketones from Secondary Alcohols by Cell Suspensions of C(2) to C(4)n-Alkane-Grown Bacteria.
    Hou CT; Patel R; Laskin AI; Barnabe N; Barist I
    Appl Environ Microbiol; 1983 Jul; 46(1):178-84. PubMed ID: 16346339
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbial oxidation of gaseous hydrocarbons: production of methyl ketones from their corresponding secondary alcohols by methane- and methanol-grown microbes.
    Hou CT; Patel R; Laskin AI; Barnabe N; Marczak I
    Appl Environ Microbiol; 1979 Jul; 38(1):135-42. PubMed ID: 39503
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microbial Oxidation of Gaseous Hydrocarbons: Production of Secondary Alcohols from Corresponding n-Alkanes by Methane-Utilizing Bacteria.
    Patel RN; Hou CT; Laskin AI; Felix A; Derelanko P
    Appl Environ Microbiol; 1980 Apr; 39(4):720-6. PubMed ID: 16345537
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbial oxidation of gaseous hydrocarbons: production of alcohols and methyl ketones from their corresponding n-alkanes by methylotrophic bacteria.
    Hou CT; Patel RN; Laski AI; Marczak I; Barnabe N
    Can J Microbiol; 1981 Jan; 27(1):107-15. PubMed ID: 6783282
    [TBL] [Abstract][Full Text] [Related]  

  • 5. METHYL KETONE METABOLISM IN HYDROCARBON-UTILIZING MYCOBACTERIA.
    LUKINS HB; FOSTER JW
    J Bacteriol; 1963 May; 85(5):1074-87. PubMed ID: 14043998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Purification and properties of a NAD-linked 1,2-propanediol dehydrogenase from propane-grown Pseudomonas fluorescens NRRL B-1244.
    Hou CT; Patel RN; Laskin AI; Barnabe N; Barist I
    Arch Biochem Biophys; 1983 May; 223(1):297-308. PubMed ID: 6407398
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidation of secondary alcohols to methyl ketones by yeasts.
    Patel RN; Hou CT; Laskin AI; Derelanko P; Felix A
    Appl Environ Microbiol; 1979 Aug; 38(2):219-23. PubMed ID: 42348
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbial production of methyl ketones. Purification and properties of a secondary alcohol dehydrogenase from yeast.
    Patel RN; Hou CT; Laskin AI; Derelanko P; Felix A
    Eur J Biochem; 1979 Nov; 101(2):401-6. PubMed ID: 230031
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbial Oxidation of Gaseous Hydrocarbons: Production of Methylketones from Corresponding n-Alkanes by Methane-Utilizing Bacteria.
    Patel RN; Hou CT; Laskin AI; Felix A; Derelanko P
    Appl Environ Microbiol; 1980 Apr; 39(4):727-33. PubMed ID: 16345538
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Epoxidation of short-chain alkenes by resting-cell suspensions of propane-grown bacteria.
    Hou CT; Patel R; Laskin AI; Barnabe N; Barist I
    Appl Environ Microbiol; 1983 Jul; 46(1):171-7. PubMed ID: 16346338
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermostable NAD-linked secondary alcohol dehydrogenase from propane-grown Pseudomonas fluorescens NRRL B-1244.
    Hou CT; Patel RN; Laskin AI; Barist I; Barnabe N
    Appl Environ Microbiol; 1983 Jul; 46(1):98-105. PubMed ID: 6412630
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Butane metabolism by butane-grown 'Pseudomonas butanovora'.
    Arp DJ
    Microbiology (Reading); 1999 May; 145 ( Pt 5)():1173-1180. PubMed ID: 10376833
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contribution of liver alcohol dehydrogenase to metabolism of alcohols in rats.
    Plapp BV; Leidal KG; Murch BP; Green DW
    Chem Biol Interact; 2015 Jun; 234():85-95. PubMed ID: 25641189
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stereospecificity and other properties of a novel secondary-alcohol-specific alcohol dehydrogenase.
    Hou CT; Patel R; Barnabe N; Marczak I
    Eur J Biochem; 1981 Oct; 119(2):359-64. PubMed ID: 7030736
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Substrate specificity and stereoselectivity of horse liver alcohol dehydrogenase. Kinetic evaluation of binding and activation parameters controlling the catalytic cycles of unbranched, acyclic secondary alcohols and ketones as substrates of the native and active-site-specific Co(II)-substituted enzyme.
    Adolph HW; Maurer P; Schneider-Bernlöhr H; Sartorius C; Zeppezauer M
    Eur J Biochem; 1991 Nov; 201(3):615-25. PubMed ID: 1935957
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermostable NAD+-dependent (R)-specific secondary alcohol dehydrogenase from cholesterol-utilizing Burkholderia sp. AIU 652.
    Isobe K; Wakao N
    J Biosci Bioeng; 2003; 96(4):387-93. PubMed ID: 16233542
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gene structure and regulation of alkane monooxygenases in propane-utilizing Mycobacterium sp. TY-6 and Pseudonocardia sp. TY-7.
    Kotani T; Kawashima Y; Yurimoto H; Kato N; Sakai Y
    J Biosci Bioeng; 2006 Sep; 102(3):184-92. PubMed ID: 17046531
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wide distribution of the sad gene cluster for sub-terminal oxidation in alkane utilizers.
    Yin CF; Xu Y; Li T; Zhou NY
    Environ Microbiol; 2022 Dec; 24(12):6307-6319. PubMed ID: 35837858
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Purification and properties of a secondary alcohol dehydrogenase from the parasitic protozoan Tritrichomonas foetus.
    Kleiner DE; Johnston M
    J Biol Chem; 1985 Jul; 260(13):8038-43. PubMed ID: 3159722
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Verrucomicrobial methanotrophs grow on diverse C3 compounds and use a homolog of particulate methane monooxygenase to oxidize acetone.
    Awala SI; Gwak JH; Kim YM; Kim SJ; Strazzulli A; Dunfield PF; Yoon H; Kim GJ; Rhee SK
    ISME J; 2021 Dec; 15(12):3636-3647. PubMed ID: 34158629
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.