These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 16346411)

  • 1. Long-Term Changes in Chemostat Cultures of Cytophaga johnsonae.
    Höfle MG
    Appl Environ Microbiol; 1983 Nov; 46(5):1045-53. PubMed ID: 16346411
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transient Responses of Glucose-Limited Cultures of Cytophaga johnsonae to Nutrient Excess and Starvation.
    Höfle MG
    Appl Environ Microbiol; 1984 Feb; 47(2):356-62. PubMed ID: 16346475
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring small-scale chemostats to scale up microbial processes: 3-hydroxypropionic acid production in S. cerevisiae.
    Lis AV; Schneider K; Weber J; Keasling JD; Jensen MK; Klein T
    Microb Cell Fact; 2019 Mar; 18(1):50. PubMed ID: 30857529
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of techniques for the genetic manipulation of the gliding bacterium Cytophaga johnsonae.
    McBride MJ; Kempf MJ
    J Bacteriol; 1996 Feb; 178(3):583-90. PubMed ID: 8550486
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physiology of the yeast Kluyveromyces marxianus during batch and chemostat cultures with glucose as the sole carbon source.
    Fonseca GG; Gombert AK; Heinzle E; Wittmann C
    FEMS Yeast Res; 2007 May; 7(3):422-35. PubMed ID: 17233766
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of growth rate and nutrient limitation on the microbial composition and biochemical properties of a mixed culture of oral bacteria grown in a chemostat.
    Marsh PD; Hunter JR; Bowden GH; Hamilton IR; McKee AS; Hardie JM; Ellwood DC
    J Gen Microbiol; 1983 Mar; 129(3):755-70. PubMed ID: 6348208
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimization and stability of glucoamylase production by recombinant strains of Aspergillus niger in chemostat culture.
    Withers JM; Swift RJ; Wiebe MG; Robson GD; Punt PJ; van den Hondel CA; Trinci AP
    Biotechnol Bioeng; 1998 Aug; 59(4):407-18. PubMed ID: 10099354
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quasi steady state growth of Lactococcus lactis in glucose-limited acceleration stat (A-stat) cultures.
    Adamberg K; Lahtvee PJ; Valgepea K; Abner K; Vilu R
    Antonie Van Leeuwenhoek; 2009 Mar; 95(3):219-26. PubMed ID: 19184516
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Negative chemotaxis in Cytophaga johnsonae.
    Liu ZX; Fridovich I
    Can J Microbiol; 1996 May; 42(5):515-8. PubMed ID: 8640609
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of limiting nutrients, dilution rate, culture pH, and temperature on the yield constant and anthocyanin accumulation of carrot cells grown in semicontinuous chemostat cultures.
    Dougall DK; Labrake S; Whitten GH
    Biotechnol Bioeng; 1983 Feb; 25(2):569-79. PubMed ID: 18548671
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The relationship between transport kinetics and glucose uptake by Saccharomyces cerevisiae in aerobic chemostat cultures.
    du Preez JC; de Kock SH; Kilian SG; Litthauer D
    Antonie Van Leeuwenhoek; 2000 May; 77(4):379-88. PubMed ID: 10959567
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic and kinetic studies of hybridomas in exponentially fed-batch cultures using T-flasks.
    Higareda AE; Possani LD; Ramírez OT
    Cytotechnology; 1994; 15(1-3):73-86. PubMed ID: 7765955
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glucose uptake and growth of glucose-limited chemostat cultures of Aspergillus niger and a disruptant lacking MstA, a high-affinity glucose transporter.
    Jørgensen TR; vanKuyk PA; Poulsen BR; Ruijter GJG; Visser J; Iversen JJL
    Microbiology (Reading); 2007 Jun; 153(Pt 6):1963-1973. PubMed ID: 17526853
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acetate acts as a protonophore and differentially affects bead movement and cell migration of the gliding bacterium Cytophaga johnsonae (Flavobacterium johnsoniae).
    Dzink-Fox JL; Leadbetter ER; Godchaux W
    Microbiology (Reading); 1997 Dec; 143 ( Pt 12)():3693-3701. PubMed ID: 9421895
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glucose uptake rates of single E. coli cells grown in glucose-limited chemostat cultures.
    Natarajan A; Srienc F
    J Microbiol Methods; 2000 Sep; 42(1):87-96. PubMed ID: 11000435
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperate phages and bacteriocins of the gliding bacterium Cytophaga johnsonae.
    Richter CA; Pate JL
    J Gen Microbiol; 1988 Feb; 134(2):253-62. PubMed ID: 3171539
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The biochemical composition and calorific content of a rotifer and its algal food: comparison of a two stage chemostat and batch culture.
    Schmid-Araya JM
    Oecologia; 1992 Dec; 92(3):327-338. PubMed ID: 28312598
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Establishment of the steady state in glucose-limited chemostat cultures of Klebsiella pneumoniae.
    Rutgers M; Teixeira de Mattos MJ; Postma PW; Van Dam K
    J Gen Microbiol; 1987 Feb; 133(2):445-51. PubMed ID: 3309157
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of concentration of substrates and products on the growth of Klebsiella pneumoniae in chemostat cultures.
    Rutgers M; Balk PA; van Dam K
    Biochim Biophys Acta; 1989 Nov; 977(2):142-9. PubMed ID: 2508755
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemostat cultivation as a tool for studies on sugar transport in yeasts.
    Weusthuis RA; Pronk JT; van den Broek PJ; van Dijken JP
    Microbiol Rev; 1994 Dec; 58(4):616-30. PubMed ID: 7854249
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.