These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 16346441)

  • 21. Enzymes of anaerobic metabolism of phenolic compounds. 4-Hydroxybenzoyl-CoA reductase (dehydroxylating) from a denitrifying Pseudomonas species.
    Brackmann R; Fuchs G
    Eur J Biochem; 1993 Apr; 213(1):563-71. PubMed ID: 8477729
    [TBL] [Abstract][Full Text] [Related]  

  • 22. (Per)chlorate-reducing bacteria can utilize aerobic and anaerobic pathways of aromatic degradation with (per)chlorate as an electron acceptor.
    Carlström CI; Loutey D; Bauer S; Clark IC; Rohde RA; Iavarone AT; Lucas L; Coates JD
    mBio; 2015 Mar; 6(2):. PubMed ID: 25805732
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biotransformation of ferulic acid to protocatechuic acid by Corynebacterium glutamicum ATCC 21420 engineered to express vanillate O-demethylase.
    Okai N; Masuda T; Takeshima Y; Tanaka K; Yoshida KI; Miyamoto M; Ogino C; Kondo A
    AMB Express; 2017 Dec; 7(1):130. PubMed ID: 28641405
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The separation of vanillate O-demethylase from protocatechuate 3,4-oxygenase by ultracentrifugation.
    Cartwright NJ; Buswell JA
    Biochem J; 1967 Nov; 105(2):767-70. PubMed ID: 4296326
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genetics of ferulic acid bioconversion to protocatechuic acid in plant-growth-promoting Pseudomonas putida WCS358.
    Venturi V; Zennaro F; Degrassi G; Okeke BC; Bruschi CV
    Microbiology (Reading); 1998 Apr; 144 ( Pt 4)():965-973. PubMed ID: 9579070
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Alternative routes of aromatic catabolism in Pseudomonas acidovorans and Pseudomonas putida: gallic acid as a substrate and inhibitor of dioxygenases.
    Sparnins VL; Dagley S
    J Bacteriol; 1975 Dec; 124(3):1374-81. PubMed ID: 1194238
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Regulation of vanillate and syringate catabolism by a MarR-type transcriptional regulator DesR in Sphingobium sp. SYK-6.
    Araki T; Umeda S; Kamimura N; Kasai D; Kumano S; Abe T; Kawazu C; Otsuka Y; Nakamura M; Katayama Y; Fukuda M; Masai E
    Sci Rep; 2019 Dec; 9(1):18036. PubMed ID: 31792252
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Functional coupling between vanillate-O-demethylase and formaldehyde detoxification pathway.
    Hibi M; Sonoki T; Mori H
    FEMS Microbiol Lett; 2005 Dec; 253(2):237-42. PubMed ID: 16242864
    [TBL] [Abstract][Full Text] [Related]  

  • 29. New aerobic benzoate oxidation pathway via benzoyl-coenzyme A and 3-hydroxybenzoyl-coenzyme A in a denitrifying Pseudomonas sp.
    Altenschmidt U; Oswald B; Steiner E; Herrmann H; Fuchs G
    J Bacteriol; 1993 Aug; 175(15):4851-8. PubMed ID: 8335640
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Studies on the Biotransformation of Veratric Acid, a Human Metabolite of Mebeverine, by Using the Incubated Hen's Egg.
    Kiep L; Göhl M; Schmidt J; Seifert K
    Drug Res (Stuttg); 2015 Sep; 65(9):500-4. PubMed ID: 25310250
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Anaerobic Degradation of Syringic Acid by an Adapted Strain of Rhodopseudomonas palustris.
    Oshlag JZ; Ma Y; Morse K; Burger BT; Lemke RA; Karlen SD; Myers KS; Donohue TJ; Noguera DR
    Appl Environ Microbiol; 2020 Jan; 86(3):. PubMed ID: 31732577
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Anaerobic c(1) metabolism of the o-methyl-C-labeled substituent of vanillate.
    Frazer AC; Young LY
    Appl Environ Microbiol; 1986 Jan; 51(1):84-7. PubMed ID: 16346978
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Metabolism of isovanillate, vanillate, and veratrate by Comamonas testosteroni strain BR6020.
    Providenti MA; O'Brien JM; Ruff J; Cook AM; Lambert IB
    J Bacteriol; 2006 Jun; 188(11):3862-9. PubMed ID: 16707678
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Streptomyces setonii: catabolism of vanillic acid via guaiacol and catechol.
    Pometto AL; Sutherland JB; Crawford DL
    Can J Microbiol; 1981 Jun; 27(6):636-8. PubMed ID: 7260738
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Degradation of methoxylated benzoic acids by a Nocardia from a lignin-rich environment: significance to lignin degradation and effect of chloro substituents.
    Crawford RL; McCoy E; Harkin JM; Kirk TK; Obst JR
    Appl Microbiol; 1973 Aug; 26(2):176-84. PubMed ID: 4743871
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biotransformation of eugenol via protocatechuic acid by thermophilic Geobacillus sp. AY 946034 strain.
    Giedraityte G; Kalėdienė L
    J Microbiol Biotechnol; 2014 Apr; 24(4):475-82. PubMed ID: 24375415
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Aerobic Methoxydotrophy: Growth on Methoxylated Aromatic Compounds by
    Lee JA; Stolyar S; Marx CJ
    Front Microbiol; 2022; 13():849573. PubMed ID: 35359736
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [On demethylation and decarboxylation of benzoic acids in plant cell suspension cultures].
    Harms H; Haider K; Berlin J; Kiss P; Barz W
    Planta; 1972 Dec; 105(4):342-51. PubMed ID: 24477847
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enzymatic release of halogens or methanol from some substituted protocatechuic acids.
    Kersten PJ; Chapman PJ; Dagley S
    J Bacteriol; 1985 May; 162(2):693-7. PubMed ID: 3988709
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Phenylpropanoid Metabolism in Suspension Cultures of Vanilla planifolia Andr. : III. Conversion of 4-Methoxycinnamic Acids into 4-Hydroxybenzoic Acids.
    Funk C; Brodelius PE
    Plant Physiol; 1990 Sep; 94(1):102-8. PubMed ID: 16667674
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.