These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 16346447)

  • 21. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Clostridium aciditolerans sp. nov., an acid-tolerant spore-forming anaerobic bacterium from constructed wetland sediment.
    Lee YJ; Romanek CS; Wiegel J
    Int J Syst Evol Microbiol; 2007 Feb; 57(Pt 2):311-315. PubMed ID: 17267970
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Energetics of pyruvate phosphate dikinase catalysis.
    Mehl A; Xu Y; Dunaway-Mariano D
    Biochemistry; 1994 Feb; 33(5):1093-102. PubMed ID: 8110740
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Properties and mechanism of action of pyruvate, phosphate dikinase from leaves.
    Andrews TJ; Hatch MD
    Biochem J; 1969 Aug; 114(1):117-25. PubMed ID: 5810041
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Clostridium algidixylanolyticum sp. nov., a psychrotolerant, xylan-degrading, spore-forming bacterium.
    Broda DM; Saul DJ; Bell RG; Musgrave DR
    Int J Syst Evol Microbiol; 2000 Mar; 50 Pt 2():623-631. PubMed ID: 10758868
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Clostridium carboxidivorans sp. nov., a solvent-producing clostridium isolated from an agricultural settling lagoon, and reclassification of the acetogen Clostridium scatologenes strain SL1 as Clostridium drakei sp. nov.
    Liou JS; Balkwill DL; Drake GR; Tanner RS
    Int J Syst Evol Microbiol; 2005 Sep; 55(Pt 5):2085-2091. PubMed ID: 16166714
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Control of pyruvate kinase activity during glycolysis and gluconeogenesis in Propionibacterium shermanii.
    Smart JB; Pritchard GG
    J Gen Microbiol; 1982 Jan; 128(1):167-76. PubMed ID: 6283013
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effective isopropanol-butanol (IB) fermentation with high butanol content using a newly isolated
    Youn SH; Lee KM; Kim KY; Lee SM; Woo HM; Um Y
    Biotechnol Biofuels; 2016; 9():230. PubMed ID: 27800016
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of recombinant strains of the Clostridium acetobutylicum butyrate kinase inactivation mutant: need for new phenomenological models for solventogenesis and butanol inhibition?
    Harris LM; Desai RP; Welker NE; Papoutsakis ET
    Biotechnol Bioeng; 2000 Jan; 67(1):1-11. PubMed ID: 10581430
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Location of the catalytic site for phosphoenolpyruvate formation within the primary structure of Clostridium symbiosum pyruvate phosphate dikinase. 2. Site-directed mutagenesis of an essential arginine contained within an apparent P-loop.
    Yankie L; Xu Y; Dunaway-Mariano D
    Biochemistry; 1995 Feb; 34(7):2188-94. PubMed ID: 7857930
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Clostridium aldrichii sp. nov., a cellulolytic mesophile inhabiting a wood-fermenting anaerobic digester.
    Yang JC; Chynoweth DP; Williams DS; Li A
    Int J Syst Bacteriol; 1990 Jul; 40(3):268-72. PubMed ID: 2397194
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Carbon monoxide bioconversion to butanol-ethanol by Clostridium carboxidivorans: kinetics and toxicity of alcohols.
    Fernández-Naveira Á; Abubackar HN; Veiga MC; Kennes C
    Appl Microbiol Biotechnol; 2016 May; 100(9):4231-40. PubMed ID: 26921183
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In situ hydrogen, acetone, butanol, ethanol and microdiesel production by Clostridium acetobutylicum ATCC 824 from oleaginous fungal biomass.
    Hassan EA; Abd-Alla MH; Bagy MM; Morsy FM
    Anaerobe; 2015 Aug; 34():125-31. PubMed ID: 26014369
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Butanol production from the effluent of hydrogen fermentation.
    Chen WH; Chen SY; Chao SJ; Jian ZC
    Water Sci Technol; 2011; 63(6):1236-40. PubMed ID: 21436562
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Physiology of carbohydrate to solvent conversion by clostridia.
    Mitchell WJ
    Adv Microb Physiol; 1998; 39():31-130. PubMed ID: 9328646
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High-efficient production of biobutanol by a novel Clostridium sp. strain WST with uncontrolled pH strategy.
    Shanmugam S; Sun C; Zeng X; Wu YR
    Bioresour Technol; 2018 May; 256():543-547. PubMed ID: 29486913
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Properties of Desulfovibrio carbinolicus sp. nov. and Other Sulfate-Reducing Bacteria Isolated from an Anaerobic-Purification Plant.
    Nanninga HJ; Gottschal JC
    Appl Environ Microbiol; 1987 Apr; 53(4):802-9. PubMed ID: 16347324
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Clostridium swellfunianum sp. nov., a novel anaerobic bacterium isolated from the pit mud of Chinese Luzhou-flavor liquor production.
    Liu C; Huang D; Liu L; Zhang J; Deng Y; Chen L; Zhang W; Wu Z; Fan A; Lai D; Dai L
    Antonie Van Leeuwenhoek; 2014 Oct; 106(4):817-25. PubMed ID: 25103947
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fermentation of ethylene glycol by Clostridium glycolicum, sp. n.
    GASTON LW; STADTMAN ER
    J Bacteriol; 1963 Feb; 85(2):356-62. PubMed ID: 13946772
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Carbon flux distribution and kinetics of cellulose fermentation in steady-state continuous cultures of Clostridium cellulolyticum on a chemically defined medium.
    Desvaux M; Guedon E; Petitdemange H
    J Bacteriol; 2001 Jan; 183(1):119-30. PubMed ID: 11114908
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.