These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 16346478)

  • 1. Kinetics of Sulfate and Acetate Uptake by Desulfobacter postgatei.
    Ingvorsen K; Zehnder AJ; Jørgensen BB
    Appl Environ Microbiol; 1984 Feb; 47(2):403-8. PubMed ID: 16346478
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetics of butyrate, acetate, and hydrogen metabolism in a thermophilic, anaerobic, butyrate-degrading triculture.
    Ahring BK; Westermann P
    Appl Environ Microbiol; 1987 Feb; 53(2):434-9. PubMed ID: 16347293
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. I. Isolation of new sulfate-reducing bacteria enriched with acetate from saline environments. Description of Desulfobacter postgatei gen. nov., sp. nov.
    Widdel F; Pfennig N
    Arch Microbiol; 1981 Jul; 129(5):395-400. PubMed ID: 7283636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Competition for sulfate and ethanol among desulfobacter, desulfobulbus, and desulfovibrio species isolated from intertidal sediments.
    Laanbroek HJ; Geerligs HJ; Sijtsma L; Veldkamp H
    Appl Environ Microbiol; 1984 Feb; 47(2):329-34. PubMed ID: 16346474
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon isotope fractionation by sulfate-reducing bacteria using different pathways for the oxidation of acetate.
    Goevert D; Conrad R
    Environ Sci Technol; 2008 Nov; 42(21):7813-7. PubMed ID: 19031865
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational Screening of Potential Inhibitors of
    Onawole AT; Hussein IA; Saad MA; Ahmed MEM; Nimir H
    ACS Omega; 2021 Apr; 6(16):10607-10617. PubMed ID: 34056214
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetics of hydrogen consumption by rumen fluid, anaerobic digestor sludge, and sediment.
    Robinson JA; Tiedje JM
    Appl Environ Microbiol; 1982 Dec; 44(6):1374-84. PubMed ID: 16346154
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic parameters of the conversion of methane precursors to methane in a hypereutrophic lake sediment.
    Strayer RF; Tiedje JM
    Appl Environ Microbiol; 1978 Aug; 36(2):330-40. PubMed ID: 16345312
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Methanogenic archaea and sulfate reducing bacteria co-cultured on acetate: teamwork or coexistence?
    Ozuolmez D; Na H; Lever MA; Kjeldsen KU; Jørgensen BB; Plugge CM
    Front Microbiol; 2015; 6():492. PubMed ID: 26074892
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Methanol promotes atmospheric methane oxidation by methanotrophic cultures and soils.
    Benstead J; King GM; Williams HG
    Appl Environ Microbiol; 1998 Mar; 64(3):1091-8. PubMed ID: 16349514
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dissimilatory sulphate reduction with acetate as electron donor.
    Thauer RK
    Philos Trans R Soc Lond B Biol Sci; 1982 Sep; 298(1093):467-71. PubMed ID: 6127736
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Desulfobacter psychrotolerans sp. nov., a new psychrotolerant sulfate-reducing bacterium and descriptions of its physiological response to temperature changes.
    Tarpgaard IH; Boetius A; Finster K
    Antonie Van Leeuwenhoek; 2006 Jan; 89(1):109-24. PubMed ID: 16328859
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetics of Formate Metabolism in Methanobacterium formicicum and Methanospirillum hungatei.
    Schauer NL; Brown DP; Ferry JG
    Appl Environ Microbiol; 1982 Sep; 44(3):549-54. PubMed ID: 16346087
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetics of bacterial growth on chlorinated aliphatic compounds.
    van den Wijngaard AJ; Wind RD; Janssen DB
    Appl Environ Microbiol; 1993 Jul; 59(7):2041-8. PubMed ID: 16348981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A study of mixed continuous cultures of sulfate-reducing and methane-producing bacteria.
    Cappenberg TE
    Microb Ecol; 1975 Mar; 2(1):60-72. PubMed ID: 24241162
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Saturable, energy-dependent uptake of phenanthrene in aqueous phase by Mycobacterium sp. strain RJGII-135.
    Miyata N; Iwahori K; Foght JM; Gray MR
    Appl Environ Microbiol; 2004 Jan; 70(1):363-9. PubMed ID: 14711664
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nitrate Reduction in a Sulfate-Reducing Bacterium, Desulfovibrio desulfuricans, Isolated from Rice Paddy Soil: Sulfide Inhibition, Kinetics, and Regulation.
    Dalsgaard T; Bak F
    Appl Environ Microbiol; 1994 Jan; 60(1):291-7. PubMed ID: 16349159
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of sulfate reduction on the bacterial community and kinetic parameters of a dechlorinating culture under chemostat growth conditions.
    Berggren DR; Marshall IP; Azizian MF; Spormann AM; Semprini L
    Environ Sci Technol; 2013 Feb; 47(4):1879-86. PubMed ID: 23316874
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sigmoidal substrate saturation curves in Michaelis-Menten mechanism as an artefact.
    Fischer E; Keleti T
    Acta Biochim Biophys Acad Sci Hung; 1975; 10(3):221-7. PubMed ID: 1211106
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Demethylation of dimethylsulfoniopropionate to 3-S-methylmercaptopropionate by marine sulfate-reducing bacteria.
    van der Maarel MJ; Jansen M; Haanstra R; Meijer WG; Hansen TA
    Appl Environ Microbiol; 1996 Nov; 62(11):3978-84. PubMed ID: 8899985
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.