These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 16346478)

  • 21. Glucose uptake and growth of glucose-limited chemostat cultures of Aspergillus niger and a disruptant lacking MstA, a high-affinity glucose transporter.
    Jørgensen TR; vanKuyk PA; Poulsen BR; Ruijter GJG; Visser J; Iversen JJL
    Microbiology (Reading); 2007 Jun; 153(Pt 6):1963-1973. PubMed ID: 17526853
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of hydraulic retention time and sulfide toxicity on ethanol and acetate oxidation in sulfate-reducing metal-precipitating fluidized-bed reactor.
    Kaksonen AH; Franzmann PD; Puhakka JA
    Biotechnol Bioeng; 2004 May; 86(3):332-43. PubMed ID: 15083513
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modelling of mixed chemostat cultures of an aerobic bacterium, Comamonas testosteroni, and an anaerobic bacterium, Veillonella alcalescens: comparison with experimental data.
    Gerritse J; Schut F; Gottschal JC
    Appl Environ Microbiol; 1992 May; 58(5):1466-76. PubMed ID: 1622213
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Differences in Michaelis-Menten kinetics for different cultivars of maize during cyanide removal.
    Yu XZ; Gu JD
    Ecotoxicol Environ Saf; 2007 Jun; 67(2):254-9. PubMed ID: 17064775
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sulfate reducers can outcompete methanogens at freshwater sulfate concentrations.
    Lovley DR; Klug MJ
    Appl Environ Microbiol; 1983 Jan; 45(1):187-92. PubMed ID: 16346164
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Measurement of minimum substrate concentration (Smin) in a recycling fermentor and its prediction from the kinetic parameters of Pseudomonas strain B13 from batch and chemostat cultures.
    Tros ME; Bosma TN; Schraa G; Zehnder AJ
    Appl Environ Microbiol; 1996 Oct; 62(10):3655-61. PubMed ID: 8967775
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Determination of the efficiency of oxidative phosphorylation in continuous cultures of Aerobacter aerogenes.
    Stouthamer AH; Bettenhaussen CW
    Arch Microbiol; 1975 Mar; 102(3):187-92. PubMed ID: 1156084
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Partial purification and kinetic characterization of acid phosphatase from garlic seedling.
    Yenigün B; Güvenilir Y
    Appl Biochem Biotechnol; 2003; 105 -108():677-87. PubMed ID: 12721447
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Recording and Simulating Proton-Related Metabolism in Bacterial Cell Suspensions.
    Cypionka H; Reese JO
    Front Microbiol; 2021; 12():654065. PubMed ID: 33995312
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Insulin and epidermal growth factor. Human fibroblast receptors related to deoxyribonucleic acid synthesis and amino acid uptake.
    Hollenberg MD; Cuatrecasas P
    J Biol Chem; 1975 May; 250(10):3845-53. PubMed ID: 165185
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The comparison of the estimation of enzyme kinetic parameters by fitting reaction curve to the integrated Michaelis-Menten rate equations of different predictor variables.
    Liao F; Zhu XY; Wang YM; Zuo YP
    J Biochem Biophys Methods; 2005 Jan; 62(1):13-24. PubMed ID: 15656940
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The marine sulfate reducer Desulfobacterium autotrophicum HRM2 can switch between low and high apparent half-saturation constants for dissimilatory sulfate reduction.
    Tarpgaard IH; Jørgensen BB; Kjeldsen KU; Røy H
    FEMS Microbiol Ecol; 2017 Apr; 93(4):. PubMed ID: 28158724
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Optimal designs for Michaelis-Menten kinetic studies.
    Matthews JN; Allcock GC
    Stat Med; 2004 Feb; 23(3):477-91. PubMed ID: 14748040
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Kinetics of the methanogenic fermentation of acetate.
    Fukuzaki S; Nishio N; Nagai S
    Appl Environ Microbiol; 1990 Oct; 56(10):3158-63. PubMed ID: 16348323
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biofilm Dynamics and Kinetics during High-Rate Sulfate Reduction under Anaerobic Conditions.
    Nielsen PH
    Appl Environ Microbiol; 1987 Jan; 53(1):27-32. PubMed ID: 16347263
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Michaelis-Menten elimination kinetics of acetate during ethanol oxidation.
    Fujimiya T; Li YJ; Ohbora Y
    Alcohol Clin Exp Res; 2000 Apr; 24(4 Suppl):16S-20S. PubMed ID: 10803773
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Uptake of acetate by Acinetobacter calcoaceticus].
    Haferburg D; Kleber HP; Aurich H
    Acta Biol Med Ger; 1977; 36(9):1237-42. PubMed ID: 614747
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of low sulfate concentrations on lactate oxidation and isotope fractionation during sulfate reduction by Archaeoglobus fulgidus strain Z.
    Habicht KS; Salling L; Thamdrup B; Canfield DE
    Appl Environ Microbiol; 2005 Jul; 71(7):3770-7. PubMed ID: 16000788
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Determining incremental coulombic efficiency and physiological parameters of early stage Geobacter spp. enrichment biofilms.
    Korth B; Kretzschmar J; Bartz M; Kuchenbuch A; Harnisch F
    PLoS One; 2020; 15(6):e0234077. PubMed ID: 32559199
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Estimation of biodegradation parameters of phenolic compounds on activated sludge by respirometry.
    Orupõld K; Masirin A; Tenno T
    Chemosphere; 2001 Aug; 44(5):1273-80. PubMed ID: 11513418
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.