These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
234 related articles for article (PubMed ID: 16346490)
1. Suicide Inactivation of Catechol 2,3-Dioxygenase from Pseudomonas putida mt-2 by 3-Halocatechols. Bartels I; Knackmuss HJ; Reineke W Appl Environ Microbiol; 1984 Mar; 47(3):500-5. PubMed ID: 16346490 [TBL] [Abstract][Full Text] [Related]
2. Inhibition of catechol 2,3-dioxygenase from Pseudomonas putida by 3-chlorocatechol. Klecka GM; Gibson DT Appl Environ Microbiol; 1981 May; 41(5):1159-65. PubMed ID: 7259155 [TBL] [Abstract][Full Text] [Related]
3. Quantitative structure/activity relationship for the rate of conversion of C4-substituted catechols by catechol-1,2-dioxygenase from Pseudomonas putida (arvilla) C1. Ridder L; Briganti F; Boersma MG; Boeren S; Vis EH; Scozzafava A; Veeger C; Rietjens IM Eur J Biochem; 1998 Oct; 257(1):92-100. PubMed ID: 9799107 [TBL] [Abstract][Full Text] [Related]
4. Microbial degradation of chloroaromatics: use of the meta-cleavage pathway for mineralization of chlorobenzene. Mars AE; Kasberg T; Kaschabek SR; van Agteren MH; Janssen DB; Reineke W J Bacteriol; 1997 Jul; 179(14):4530-7. PubMed ID: 9226262 [TBL] [Abstract][Full Text] [Related]
5. Conversion of 3-chlorocatechol by various catechol 2,3-dioxygenases and sequence analysis of the chlorocatechol dioxygenase region of Pseudomonas putida GJ31. Mars AE; Kingma J; Kaschabek SR; Reineke W; Janssen DB J Bacteriol; 1999 Feb; 181(4):1309-18. PubMed ID: 9973359 [TBL] [Abstract][Full Text] [Related]
6. Ferredoxin-mediated reactivation of the chlorocatechol 2,3-dioxygenase from Pseudomonas putida GJ31. Tropel D; Meyer C; Armengaud J; Jouanneau Y Arch Microbiol; 2002 Apr; 177(4):345-51. PubMed ID: 11889489 [TBL] [Abstract][Full Text] [Related]
7. Growth of Pseudomonas putida F1 on styrene requires increased catechol-2,3-dioxygenase activity, not a new hydrolase. George KW; Kagle J; Junker L; Risen A; Hay AG Microbiology (Reading); 2011 Jan; 157(Pt 1):89-98. PubMed ID: 20929952 [TBL] [Abstract][Full Text] [Related]
8. Overexpression of Pseudomonas putida catechol 2,3-dioxygenase with high specific activity by genetically engineered Escherichia coli. Kobayashi T; Ishida T; Horiike K; Takahara Y; Numao N; Nakazawa A; Nakazawa T; Nozaki M J Biochem; 1995 Mar; 117(3):614-22. PubMed ID: 7629031 [TBL] [Abstract][Full Text] [Related]
9. 2,4-dioxygenases catalyzing N-heterocyclic-ring cleavage and formation of carbon monoxide. Purification and some properties of 1H-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase from Arthrobacter sp. Rü61a and comparison with 1H-3-hydroxy-4-oxoquinoline 2,4-dioxygenase from Pseudomonas putida 33/1. Bauer I; Max N; Fetzner S; Lingens F Eur J Biochem; 1996 Sep; 240(3):576-83. PubMed ID: 8856057 [TBL] [Abstract][Full Text] [Related]
10. Substrate specificity of catechol 2,3-dioxygenase encoded by TOL plasmid pWW0 of Pseudomonas putida and its relationship to cell growth. Cerdan P; Wasserfallen A; Rekik M; Timmis KN; Harayama S J Bacteriol; 1994 Oct; 176(19):6074-81. PubMed ID: 7928969 [TBL] [Abstract][Full Text] [Related]
11. TOL plasmid pWW0 in constructed halobenzoate-degrading Pseudomonas strains: prevention of meta pathway. Reineke W; Jeenes DJ; Williams PA; Knackmuss HJ J Bacteriol; 1982 Apr; 150(1):195-201. PubMed ID: 7061393 [TBL] [Abstract][Full Text] [Related]
12. [Cloning and expression of catA gene from Pseudomonas putida ND6 and study on the catechol cleavage pathway]. Zhao HB; Chen W; Cai BL Wei Sheng Wu Xue Bao; 2007 Jun; 47(3):387-91. PubMed ID: 17672292 [TBL] [Abstract][Full Text] [Related]
13. Extradiol cleavage of 3-substituted catechols by an intradiol dioxygenase, pyrocatechase, from a Pseudomonad. Fujiwara M; Golovleva LA; Saeki Y; Nozaki M; Hayaishi O J Biol Chem; 1975 Jul; 250(13):4848-55. PubMed ID: 238971 [TBL] [Abstract][Full Text] [Related]
14. Overproduction, purification, and characterization of chlorocatechol dioxygenase, a non-heme iron dioxygenase with broad substrate tolerance. Broderick JB; O'Halloran TV Biochemistry; 1991 Jul; 30(29):7349-58. PubMed ID: 1649626 [TBL] [Abstract][Full Text] [Related]
15. Chloroplast-type ferredoxin involved in reactivation of catechol 2,3-dioxygenase from Pseudomonas sp. S 47. Park DW; Chae JC; Kim Y; Iida T; Kudo T; Kim CK J Biochem Mol Biol; 2002 Jul; 35(4):432-6. PubMed ID: 12297005 [TBL] [Abstract][Full Text] [Related]
16. Metabolism of styrene by Rhodococcus rhodochrous NCIMB 13259. Warhurst AM; Clarke KF; Hill RA; Holt RA; Fewson CA Appl Environ Microbiol; 1994 Apr; 60(4):1137-45. PubMed ID: 8017910 [TBL] [Abstract][Full Text] [Related]
17. Degradation of chloroaromatics: purification and characterization of a novel type of chlorocatechol 2,3-dioxygenase of Pseudomonas putida GJ31. Kaschabek SR; Kasberg T; Müller D; Mars AE; Janssen DB; Reineke W J Bacteriol; 1998 Jan; 180(2):296-302. PubMed ID: 9440519 [TBL] [Abstract][Full Text] [Related]
18. [Purification and properties of pyrocatechase II from Pseudomonas putida strain 87]. Solianikova IP; Mal'tseva OV; Golovleva LA Biokhimiia; 1992 Dec; 57(12):1883-91. PubMed ID: 1294257 [TBL] [Abstract][Full Text] [Related]
19. Bacterial metabolism of side chain fluorinated aromatics: cometabolism of 3-trifluoromethyl(TFM)-benzoate by Pseudomonas putida (arvilla) mt-2 and Rhodococcus rubropertinctus N657. Engesser KH; Cain RB; Knackmuss HJ Arch Microbiol; 1988 Jan; 149(3):188-97. PubMed ID: 3365096 [TBL] [Abstract][Full Text] [Related]
20. Degradation of mono-chlorophenols by a mixed microbial community via a meta- cleavage pathway. Farrell A; Quilty B Biodegradation; 1999; 10(5):353-62. PubMed ID: 10870551 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]