These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 16346505)

  • 1. Measurements of diel rates of bacterial secondary production in aquatic environments.
    Riemann B; Søndergaard M
    Appl Environ Microbiol; 1984 Apr; 47(4):632-8. PubMed ID: 16346505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Incorporation of [h]leucine and [h]valine into protein of freshwater bacteria: field applications.
    Jørgensen NO
    Appl Environ Microbiol; 1992 Nov; 58(11):3647-53. PubMed ID: 16348808
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bacterial secondary production in freshwater measured by(3)H-thymidine incorporation method.
    Riemann B; Fuhrman J; Azam F
    Microb Ecol; 1982 Oct; 8(2):101-13. PubMed ID: 24225805
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of toxic substances on natural bacterial assemblages determined by means of [h]thymidine incorporation.
    Riemann B; Lindgaard-Jørgensen P
    Appl Environ Microbiol; 1990 Jan; 56(1):75-80. PubMed ID: 16348108
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Factors controlling bacterial production in marine and freshwater sediments.
    Sander BC; Kalff J
    Microb Ecol; 1993 Sep; 26(2):79-99. PubMed ID: 24190006
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Depth distribution of bacterial production in a stratified lake with an anoxic hypolimnion.
    McDonough RJ; Sanders RW; Porter KG; Kirchman DL
    Appl Environ Microbiol; 1986 Nov; 52(5):992-1000. PubMed ID: 16347229
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Uptake and incorporation of thymidine by bacterial isolates from an upwelling environment.
    Davis CL
    Appl Environ Microbiol; 1989 May; 55(5):1267-72. PubMed ID: 16347916
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimating Bacterioplankton Production by Measuring [H]thymidine Incorporation in a Eutrophic Swedish Lake.
    Bell RT; Ahlgren GM; Ahlgren I
    Appl Environ Microbiol; 1983 Jun; 45(6):1709-21. PubMed ID: 16346304
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Seasonal bacterial production in a dimictic lake as measured by increases in cell numbers and thymidine incorporation.
    Lovell CR; Konopka A
    Appl Environ Microbiol; 1985 Mar; 49(3):492-500. PubMed ID: 16346743
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Primary and bacterial production in two dimictic indiana lakes.
    Lovell CR; Konopka A
    Appl Environ Microbiol; 1985 Mar; 49(3):485-91. PubMed ID: 16346742
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lake Metabolism: Comparison of Lake Metabolic Rates Estimated from a Diel CO2- and the Common Diel O2-Technique.
    Peeters F; Atamanchuk D; Tengberg A; Encinas-Fernández J; Hofmann H
    PLoS One; 2016; 11(12):e0168393. PubMed ID: 28002477
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protozoan grazing and bacterial production in stratified lake vechten estimated with fluorescently labeled bacteria and by thymidine incorporation.
    Bloem J; Ellenbroek FM; Bär-Gilissen MJ; Cappenberg TE
    Appl Environ Microbiol; 1989 Jul; 55(7):1787-95. PubMed ID: 16347972
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Frequency of dividing cells as an estimator of bacterial productivity.
    Newell SY; Christian RR
    Appl Environ Microbiol; 1981 Jul; 42(1):23-31. PubMed ID: 16345812
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diel changes in vertical and horizontal distribution of cladocerans in two deep lakes during early and late summer.
    Antón-Pardo M; Muška M; Jůza T; Vejříková I; Vejřík L; Blabolil P; Čech M; Draštík V; Frouzová J; Holubová M; Říha M; Sajdlová Z; Šmejkal M; Peterka J
    Sci Total Environ; 2021 Jan; 751():141601. PubMed ID: 32871313
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the calculation of lake metabolic rates: Diel O
    Peeters F; Hofmann H; Fernández JE
    Water Res; 2019 Nov; 165():114990. PubMed ID: 31445308
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ecological adaptation and acclimatization of natural freshwater phytoplankters with a nutrient gradient.
    Higashi Y; Seki H
    Environ Pollut; 2000 Aug; 109(2):311-20. PubMed ID: 15092902
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diel variability of methane emissions from lakes.
    Sieczko AK; Duc NT; Schenk J; Pajala G; Rudberg D; Sawakuchi HO; Bastviken D
    Proc Natl Acad Sci U S A; 2020 Sep; 117(35):21488-21494. PubMed ID: 32817550
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of rates of flagellate bacterivory and bacterial production in a marine coastal system.
    Barcina I; Ayo B; Unanue M; Egea L; Iriberri J
    Appl Environ Microbiol; 1992 Dec; 58(12):3850-6. PubMed ID: 16348819
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production rate of planktonic bacteria in the north basin of lake biwa, Japan.
    Nagata T
    Appl Environ Microbiol; 1987 Dec; 53(12):2872-82. PubMed ID: 16347503
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measuring Bacterial Production in Deep-Sea Sediments using 3H-Thymidine Incorporation: Ecological Significance.
    Dixon JL; Turley CM
    Microb Ecol; 2001 Dec; 42(4):549-561. PubMed ID: 12024238
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.