These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 16346508)

  • 1. Microbial biomass and utilization of dissolved organic matter in the okefenokee swamp ecosystem.
    Murray RE; Hodson RE
    Appl Environ Microbiol; 1984 Apr; 47(4):685-92. PubMed ID: 16346508
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Annual cycle of bacterial secondary production in five aquatic habitats of the okefenokee swamp ecosystem.
    Murray RE; Hodson RE
    Appl Environ Microbiol; 1985 Mar; 49(3):650-5. PubMed ID: 16346757
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contributions of three subsystems of a freshwater marsh to total bacterial secondary productivity.
    Moran MA; Hodson RE
    Microb Ecol; 1992 Sep; 24(2):161-70. PubMed ID: 24193134
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of macrophyte decomposition on growth rate and community structure of okefenokee swamp bacterioplankton.
    Murray RE; Hodson RE
    Appl Environ Microbiol; 1986 Feb; 51(2):293-301. PubMed ID: 16346986
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamics of microbial biomass and activity in five habitats of the Okefenokee Swamp ecosystem.
    Moran MA; Maccubbin AE; Benner R; Hodson RE
    Microb Ecol; 1987 Nov; 14(3):203-17. PubMed ID: 24202715
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microbial production, enzyme activity, and carbon turnover in surface sediments of the Hudson River estuary.
    Sinsabaugh RL; Findlay S
    Microb Ecol; 1995 Sep; 30(2):127-41. PubMed ID: 24185480
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temporal relationship between the deposition and microbial degradation of lignocellulosic detritus in a Georgia salt marsh and the Okefenokee Swamp.
    Benner R; Maccubbin AE; Hodson RE
    Microb Ecol; 1986 Sep; 12(3):291-8. PubMed ID: 24212682
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbial community structure and biomass estimates of a methanogenic Antarctic Lake ecosystem as determined by phospholipid analyses.
    Mancuso CA; Franzmann PD; Burton HR; Nichols PD
    Microb Ecol; 1990 Jan; 19(1):73-95. PubMed ID: 24196256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measuring Bacterial Production in Deep-Sea Sediments using 3H-Thymidine Incorporation: Ecological Significance.
    Dixon JL; Turley CM
    Microb Ecol; 2001 Dec; 42(4):549-561. PubMed ID: 12024238
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microbial uptake kinetics of dissolved organic carbon (DOC) compound groups from river water and sediments.
    Brailsford FL; Glanville HC; Golyshin PN; Johnes PJ; Yates CA; Jones DL
    Sci Rep; 2019 Aug; 9(1):11229. PubMed ID: 31375737
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ecosystem-level studies of terrestrial carbon reveal contrasting bacterial metabolism in different aquatic habitats.
    Attermeyer K; Premke K; Hornick T; Hilt S; Grossart HP
    Ecology; 2013 Dec; 94(12):2754-66. PubMed ID: 24597222
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mineralization of glucose and lignocellulose by four arctic freshwater sediments in response to nutrient enrichment.
    McKinley VL; Vestal JR
    Appl Environ Microbiol; 1992 May; 58(5):1554-63. PubMed ID: 1622225
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dissolved organic matter concentration and quality influences upon structure and function of freshwater microbial communities.
    Docherty KM; Young KC; Maurice PA; Bridgham SD
    Microb Ecol; 2006 Oct; 52(3):378-88. PubMed ID: 16767520
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combined carbon flows through detritus, microbes, and animals in reference and experimentally enriched stream ecosystems.
    Benstead JP; Cross WF; Gulis V; Rosemond AD
    Ecology; 2021 Mar; 102(3):e03279. PubMed ID: 33368179
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial and Seasonal Variation in a Reservoir Sedimentary Microbial Community as Determined by Phospholipid Analysis.
    Smoot JC; Findlay RH
    Microb Ecol; 2001 Oct; 42(3):350-358. PubMed ID: 12024260
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissolved oxygen deficits in a shallow eutrophic aquatic ecosystem (fishpond) - Sediment oxygen demand and water column respiration alternately drive the oxygen regime.
    Baxa M; Musil M; Kummel M; Hanzlík P; Tesařová B; Pechar L
    Sci Total Environ; 2021 Apr; 766():142647. PubMed ID: 33082047
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sulfate reduction in peat from a new jersey pinelands cedar swamp.
    Spratt HG; Morgan MD; Good RE
    Appl Environ Microbiol; 1987 Jul; 53(7):1406-11. PubMed ID: 16347371
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physiological Ecology of Microorganisms in Subglacial Lake Whillans.
    Vick-Majors TJ; Mitchell AC; Achberger AM; Christner BC; Dore JE; Michaud AB; Mikucki JA; Purcell AM; Skidmore ML; Priscu JC;
    Front Microbiol; 2016; 7():1705. PubMed ID: 27833599
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Headwater Stream Microbial Diversity and Function across Agricultural and Urban Land Use Gradients.
    Laperriere SM; Hilderbrand RH; Keller SR; Trott R; Santoro AE
    Appl Environ Microbiol; 2020 May; 86(11):. PubMed ID: 32245755
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sedimentary microbial community dynamics in a regulated stream: East Fork of the Little Miami River, Ohio.
    Sutton SD; Findlay RH
    Environ Microbiol; 2003 Apr; 5(4):256-66. PubMed ID: 12662173
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.