These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 16346520)
1. Dynamics of the volatile organic substances associated with cyanobacteria and algae in a eutrophic shallow lake. Jüttner F Appl Environ Microbiol; 1984 Apr; 47(4):814-20. PubMed ID: 16346520 [TBL] [Abstract][Full Text] [Related]
2. Cyanobacterial blue color formation during lysis under natural conditions. Arii S; Tsuji K; Tomita K; Hasegawa M; Bober B; Harada K Appl Environ Microbiol; 2015 Apr; 81(8):2667-75. PubMed ID: 25662969 [TBL] [Abstract][Full Text] [Related]
3. Characteristic oxidation behavior of β-cyclocitral from the cyanobacterium Microcystis. Tomita K; Hasegawa M; Arii S; Tsuji K; Bober B; Harada K Environ Sci Pollut Res Int; 2016 Jun; 23(12):11998-2006. PubMed ID: 26961531 [TBL] [Abstract][Full Text] [Related]
4. Effects of different cultivation conditions on the production of β-cyclocitral and β-ionone in Microcystis aeruginosa. Moretto JAS; de Freitas PNN; de Almeida ÉC; Altarugio LM; da Silva SV; de Fátima Fiore M; Pinto E BMC Microbiol; 2022 Mar; 22(1):78. PubMed ID: 35321650 [TBL] [Abstract][Full Text] [Related]
5. Annual dynamics and origins of the odorous compounds in the pilot experimental area of Lake Dianchi, China. Li L; Wan N; Gan NQ; Xia BD; Song LR Water Sci Technol; 2007; 55(5):43-50. PubMed ID: 17489392 [TBL] [Abstract][Full Text] [Related]
6. Spatial distributions of β-cyclocitral and β-ionone in the sediment and overlying water of the west shore of Taihu Lake. Liu X; Shi C; Xu X; Li X; Xu Y; Huang H; Zhao Y; Zhou Y; Shen H; Chen C; Wang G Sci Total Environ; 2017 Feb; 579():430-438. PubMed ID: 27890412 [TBL] [Abstract][Full Text] [Related]
7. Analytical Technique Optimization on the Detection of β-cyclocitral in Yamashita R; Bober B; Kanei K; Arii S; Tsuji K; Harada KI Molecules; 2020 Feb; 25(4):. PubMed ID: 32075007 [TBL] [Abstract][Full Text] [Related]
8. Occurrence of dissolved and particle-bound taste and odor compounds in Swiss lake waters. Peter A; Köster O; Schildknecht A; von Gunten U Water Res; 2009 May; 43(8):2191-200. PubMed ID: 19303129 [TBL] [Abstract][Full Text] [Related]
9. Volatile organic compound (VOC) analysis and sources of limonene, cyclohexanone and straight chain aldehydes in axenic cultures of Calothrix and Plectonema. Höckelmann C; Jüttner F Water Sci Technol; 2004; 49(9):47-54. PubMed ID: 15237606 [TBL] [Abstract][Full Text] [Related]
10. Lysis of cyanobacteria with volatile organic compounds. Ozaki K; Ohta A; Iwata C; Horikawa A; Tsuji K; Ito E; Ikai Y; Harada K Chemosphere; 2008 Apr; 71(8):1531-8. PubMed ID: 18179811 [TBL] [Abstract][Full Text] [Related]
11. Analytical aspects of cyanobacterial volatile organic compounds for investigation of their production behavior. Fujise D; Tsuji K; Fukushima N; Kawai K; Harada K J Chromatogr A; 2010 Sep; 1217(39):6122-5. PubMed ID: 20797719 [TBL] [Abstract][Full Text] [Related]
12. Differences in susceptibility of cyanobacteria species to lytic volatile organic compounds and influence on seasonal succession. Arii S; Yamashita R; Tsuji K; Tomita K; Hasegawa M; Bober B; Harada KI Chemosphere; 2021 Dec; 284():131378. PubMed ID: 34217930 [TBL] [Abstract][Full Text] [Related]
13. Blue color formation of cyanobacteria with beta-cyclocitral. Harada K; Ozaki K; Tsuzuki S; Kato H; Hasegawa M; Kuroda EK; Arii S; Tsuji K J Chem Ecol; 2009 Nov; 35(11):1295-301. PubMed ID: 19936836 [TBL] [Abstract][Full Text] [Related]
14. β-cyclocitral, a grazer defence signal unique to the cyanobacterium Microcystis. Jüttner F; Watson SB; von Elert E; Köster O J Chem Ecol; 2010 Dec; 36(12):1387-97. PubMed ID: 21072572 [TBL] [Abstract][Full Text] [Related]
15. Toxic mechanism of eucalyptol and β-cyclocitral on Chlamydomonas reinhardtii by inducing programmed cell death. Sun Q; Zhou M; Zuo Z J Hazard Mater; 2020 May; 389():121910. PubMed ID: 31879110 [TBL] [Abstract][Full Text] [Related]
16. Analysis of environmental drivers influencing interspecific variations and associations among bloom-forming cyanobacteria in large, shallow eutrophic lakes. Shan K; Song L; Chen W; Li L; Liu L; Wu Y; Jia Y; Zhou Q; Peng L Harmful Algae; 2019 Apr; 84():84-94. PubMed ID: 31128816 [TBL] [Abstract][Full Text] [Related]
17. Identification of geosmin and 2-methylisoborneol in cyanobacteria and molecular detection methods for the producers of these compounds. Suurnäkki S; Gomez-Saez GV; Rantala-Ylinen A; Jokela J; Fewer DP; Sivonen K Water Res; 2015 Jan; 68():56-66. PubMed ID: 25462716 [TBL] [Abstract][Full Text] [Related]
18. Dynamics and polyphasic characterization of odor-producing cyanobacterium Tychonema bourrellyi from Lake Erhai, China. Zhang H; Song G; Shao J; Xiang X; Li Q; Chen Y; Yang P; Yu G Environ Sci Pollut Res Int; 2016 Mar; 23(6):5420-30. PubMed ID: 26564199 [TBL] [Abstract][Full Text] [Related]
19. Emission of cyanobacterial volatile organic compounds and their roles in blooms. Zuo Z Front Microbiol; 2023; 14():1097712. PubMed ID: 36891397 [TBL] [Abstract][Full Text] [Related]
20. Seasonal dynamics of water bloom-forming Microcystis morphospecies and the associated extracellular microcystin concentrations in large, shallow, eutrophic Dianchi Lake. Wu Y; Li L; Gan N; Zheng L; Ma H; Shan K; Liu J; Xiao B; Song L J Environ Sci (China); 2014 Sep; 26(9):1921-9. PubMed ID: 25193843 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]