These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 16346565)

  • 1. Methane production in Minnesota peatlands.
    Williams RT; Crawford RL
    Appl Environ Microbiol; 1984 Jun; 47(6):1266-71. PubMed ID: 16346565
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anaerobic methane oxidation is quantitatively important in deeper peat layers of boreal peatlands: Evidence from anaerobic incubations, in situ stable isotopes depth profiles, and microbial communities.
    Sabrekov AF; Semenov MV; Terentieva IE; Krasnov GS; Kharitonov SL; Glagolev MV; Litti YV
    Sci Total Environ; 2024 Mar; 916():170213. PubMed ID: 38278226
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methane production and release from two New England peatlands.
    Duval B; Goodwin S
    Int Microbiol; 2000 Jun; 3(2):89-95. PubMed ID: 11001537
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Activity and metabolic regulation of methane production in deep peat profiles of boreal bogs].
    Kravchenko IK; Sirin AA
    Mikrobiologiia; 2007; 76(6):888-95. PubMed ID: 18297882
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon content and other soil properties of near-surface peats before and after peatland restoration.
    Hammerich J; Schulz C; Probst R; Lüdicke T; Luthardt V
    PeerJ; 2024; 12():e17113. PubMed ID: 38646486
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Variations in the archaeal community and associated methanogenesis in peat profiles of three typical peatland types in China.
    Chen X; Xue D; Wang Y; Qiu Q; Wu L; Wang M; Liu J; Chen H
    Environ Microbiome; 2023 Jun; 18(1):48. PubMed ID: 37280702
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of Peat Mining and Restoration on Methane Turnover Potential and Methane-Cycling Microorganisms in a Northern Bog.
    Reumer M; Harnisz M; Lee HJ; Reim A; Grunert O; Putkinen A; Fritze H; Bodelier PLE; Ho A
    Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29180368
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental burial inhibits methanogenesis and anaerobic decomposition in water-saturated peats.
    Blodau C; Siems M; Beer J
    Environ Sci Technol; 2011 Dec; 45(23):9984-9. PubMed ID: 21958021
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Seasonal changes in methanogenesis and methanogenic community in three peatlands, new york state.
    Sun CL; Brauer SL; Cadillo-Quiroz H; Zinder SH; Yavitt JB
    Front Microbiol; 2012; 3():81. PubMed ID: 22408638
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep peat warming increases surface methane and carbon dioxide emissions in a black spruce-dominated ombrotrophic bog.
    Gill AL; Giasson MA; Yu R; Finzi AC
    Glob Chang Biol; 2017 Dec; 23(12):5398-5411. PubMed ID: 28675635
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbial methanogenesis and acetate metabolism in a meromictic lake.
    Winfrey MR; Zeikus JG
    Appl Environ Microbiol; 1979 Feb; 37(2):213-21. PubMed ID: 434805
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biogeochemistry of metalliferous peats: sulfur speciation and depth distributions of dsrAB genes and Cd, Fe, Mn, S, and Zn in soil cores.
    Martínez CE; Yáñez C; Yoon SJ; Bruns MA
    Environ Sci Technol; 2007 Aug; 41(15):5323-9. PubMed ID: 17822097
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of extreme experimental drought and rewetting on CO2 and CH4 exchange in mesocosms of 14 European peatlands with different nitrogen and sulfur deposition.
    Estop-Aragonés C; Zając K; Blodau C
    Glob Chang Biol; 2016 Jun; 22(6):2285-300. PubMed ID: 26810035
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acetoclastic and hydrogenotrophic methane production and methanogenic populations in an acidic West-Siberian peat bog.
    Kotsyurbenko OR; Chin KJ; Glagolev MV; Stubner S; Simankova MV; Nozhevnikova AN; Conrad R
    Environ Microbiol; 2004 Nov; 6(11):1159-73. PubMed ID: 15479249
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Variation in peatland porewater chemistry over time and space along a bog to fen gradient.
    Griffiths NA; Sebestyen SD; Oleheiser KC
    Sci Total Environ; 2019 Dec; 697():134152. PubMed ID: 31487589
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Climatic Drivers for Multi-Decadal Shifts in Solute Transport and Methane Production Zones within a Large Peat Basin.
    Glaser PH; Siegel DI; Chanton JP; Reeve AS; Rosenberry DO; Corbett JE; Levy Z
    Global Biogeochem Cycles; 2016 Nov; 30(11):1578-1598. PubMed ID: 31649419
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vertical profiles of methanogenesis and methanogens in two contrasting acidic peatlands in central New York State, USA.
    Cadillo-Quiroz H; Bräuer S; Yashiro E; Sun C; Yavitt J; Zinder S
    Environ Microbiol; 2006 Aug; 8(8):1428-40. PubMed ID: 16872405
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbial Communities and Interactions of Nitrogen Oxides With Methanogenesis in Diverse Peatlands of the Amazon Basin.
    Buessecker S; Zamora Z; Sarno AF; Finn DR; Hoyt AM; van Haren J; Urquiza Muñoz JD; Cadillo-Quiroz H
    Front Microbiol; 2021; 12():659079. PubMed ID: 34267733
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potential Carbon Losses From Peat Profiles: Effects of Temperature, Drought Cycles, and Fire.
    Hogg EH; Lieffers VJ; Wein RW
    Ecol Appl; 1992 Aug; 2(3):298-306. PubMed ID: 27759264
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using
    Shi Y; Wang Z; He C; Zhang X; Sheng L; Ren X
    Sci Rep; 2017 Jan; 7():40848. PubMed ID: 28098207
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.