BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 16346691)

  • 1. Enrichment and Isolation of Rumen Bacteria That Reduce trans- Aconitic Acid to Tricarballylic Acid.
    Russell JB
    Appl Environ Microbiol; 1985 Jan; 49(1):120-6. PubMed ID: 16346691
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ability of Acidaminococcus fermentans to oxidize trans-aconitate and decrease the accumulation of tricarballylate, a toxic end product of ruminal fermentation.
    Cook GM; Wells JE; Russell JB
    Appl Environ Microbiol; 1994 Jul; 60(7):2533-7. PubMed ID: 8074529
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of tricarballylic acid by rumen microorganisms and its potential toxicity in ruminant tissue metabolism.
    Russell JB; Forsberg N
    Br J Nutr; 1986 Jul; 56(1):153-62. PubMed ID: 3676191
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MICROBIOLOGICAL DISSIMILATION OF TRICARBALLYLATE AND TRANS-ACONITATE.
    ALTEKAR WW; RAO MR
    J Bacteriol; 1963 Mar; 85(3):604-13. PubMed ID: 14042938
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro ruminal fermentation of organic acids common in forage.
    Russell JB; Van Soest PJ
    Appl Environ Microbiol; 1984 Jan; 47(1):155-9. PubMed ID: 6696413
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Propionate formation from cellulose and soluble sugars by combined cultures of Bacteroides succinogenes and Selenomonas ruminantium.
    Scheifinger CC; Wolin MJ
    Appl Microbiol; 1973 Nov; 26(5):789-95. PubMed ID: 4796955
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of maintenance energy expenditures and growth yields among several rumen bacteria grown on continuous culture.
    Russell JB; Baldwin RL
    Appl Environ Microbiol; 1979 Mar; 37(3):537-43. PubMed ID: 16345359
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production of branched-chain volatile fatty acids by certain anaerobic bacteria.
    Allison MJ
    Appl Environ Microbiol; 1978 May; 35(5):872-7. PubMed ID: 566082
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of pH on the efficiency of growth by pure cultures of rumen bacteria in continuous culture.
    Russell JB; Dombrowski DB
    Appl Environ Microbiol; 1980 Mar; 39(3):604-10. PubMed ID: 7387158
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ammonia saturation constants for predominant species of rumen bacteria.
    Schaefer DM; Davis CL; Bryant MP
    J Dairy Sci; 1980 Aug; 63(8):1248-63. PubMed ID: 7419777
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of ruminal bacteria in the production and utilization of maltooligosaccharides from starch.
    Cotta MA
    Appl Environ Microbiol; 1992 Jan; 58(1):48-54. PubMed ID: 1539992
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transport of tricarballylate by intestinal brush-border membrane vesicles from steers.
    Wolffram S; Zimmermann W; Scharrer E
    Exp Physiol; 1993 Jul; 78(4):473-84. PubMed ID: 8398101
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of monensin and lasalocid-sodium on the growth of methanogenic and rumen saccharolytic bacteria.
    Chen M; Wolin MJ
    Appl Environ Microbiol; 1979 Jul; 38(1):72-7. PubMed ID: 16345418
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of chetomin on growth and acidic fermentation products of rumen bacteria.
    Jen WC; Jones GA
    Can J Microbiol; 1983 Oct; 29(10):1399-404. PubMed ID: 6686488
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biotransformation of 2,4,6-trinitrotoluene by pure culture ruminal bacteria.
    De Lorme M; Craig M
    Curr Microbiol; 2009 Jan; 58(1):81-6. PubMed ID: 18839246
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of several bovine rumen bacteria isolated with a xylan medium.
    Dehority BA
    J Bacteriol; 1966 May; 91(5):1724-9. PubMed ID: 5937235
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The FAD-dependent tricarballylate dehydrogenase (TcuA) enzyme of Salmonella enterica converts tricarballylate into cis-aconitate.
    Lewis JA; Escalante-Semerena JC
    J Bacteriol; 2006 Aug; 188(15):5479-86. PubMed ID: 16855237
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbon dioxide requirement of various species of rumen bacteria.
    Dehority BA
    J Bacteriol; 1971 Jan; 105(1):70-6. PubMed ID: 5541030
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A survey of peptidase activity in rumen bacteria.
    Wallace RJ; McKain N
    J Gen Microbiol; 1991 Sep; 137(9):2259-64. PubMed ID: 1748877
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphoenolpyruvate-dependent phosphorylation of hexoses by ruminal bacteria: evidence for the phosphotransferase transport system.
    Martin SA; Russell JB
    Appl Environ Microbiol; 1986 Dec; 52(6):1348-52. PubMed ID: 3789722
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.