These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 16346699)

  • 1. Sulfide alleviation of the acetylene inhibition of nitrous oxide reduction in soil.
    Evans DG; Beauchamp E; Trevors JT
    Appl Environ Microbiol; 1985 Jan; 49(1):217-20. PubMed ID: 16346699
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Blockage by acetylene of nitrous oxide reduction in Pseudomonas perfectomarinus.
    Balderston WL; Sherr B; Payne WJ
    Appl Environ Microbiol; 1976 Apr; 31(4):504-8. PubMed ID: 1267447
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of sulfide and low redox potential on the inhibition of nitrous oxide reduction by acetylene in Pseudomonas nautica.
    Jensen KM; Cox RP
    FEMS Microbiol Lett; 1992 Sep; 75(1):13-7. PubMed ID: 1526461
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitrous oxide accumulation in soils from riparian buffers of a coastal plain watershed carbon/nitrogen ratio control.
    Hunt PG; Matheny TA; Ro KS
    J Environ Qual; 2007; 36(5):1368-76. PubMed ID: 17636299
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of a denitrifying gliding bacterium, isolated from soil and able to reduce nitrous oxide in the presence of sulfide and acetylene, as Flexibacter canadensis.
    Jones AM; Adkins AM; Knowles R; Rayat GR
    Can J Microbiol; 1990 Nov; 36(11):765-70. PubMed ID: 22049936
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of nitrate on biogenic sulfide production.
    Jenneman GE; McInerney MJ; Knapp RM
    Appl Environ Microbiol; 1986 Jun; 51(6):1205-11. PubMed ID: 16347078
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitrate requirement for acetylene inhibition of nitrous oxide reduction in marine sediments.
    Slater JM; Capone DG
    Microb Ecol; 1989 Mar; 17(2):143-57. PubMed ID: 24197243
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dissimilatory reduction of nitrate and nitrite in the bovine rumen: nitrous oxide production and effect of acetylene.
    Kaspar HF; Tiedje JM
    Appl Environ Microbiol; 1981 Mar; 41(3):705-9. PubMed ID: 7224631
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of sulfide and acetylene on nitrous oxide reduction by soil and by Pseudomonas aeruginosa.
    Tam TY; Knowles R
    Can J Microbiol; 1979 Oct; 25(10):1133-8. PubMed ID: 119571
    [No Abstract]   [Full Text] [Related]  

  • 10. [Quantitative study of biological denitrification in soils with the aid of acetylene. II.--Evolution of inhibitory effect of acetylene on N2O-reductase; influence of acetylene on denitrification rate and on nitrate immobilisation (author's transl)].
    Germon JC
    Ann Microbiol (Paris); 1980; 131B(1):81-90. PubMed ID: 6779691
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of copper dosing on sulfide inhibited reduction of nitric and nitrous oxide.
    Manconi I; van der Maas P; Lens P
    Nitric Oxide; 2006 Dec; 15(4):400-7. PubMed ID: 16765618
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurement of denitrification in two freshwater sediments by an in situ acetylene inhibition method.
    Chan YK; Knowles R
    Appl Environ Microbiol; 1979 Jun; 37(6):1067-72. PubMed ID: 16345392
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cytochrome c2 is essential for electron transfer to nitrous oxide reductase from physiological substrates in Rhodobacter capsulatus and can act as an electron donor to the reductase in vitro. Correlation with photoinhibition studies.
    Richardson DJ; Bell LC; McEwan AG; Jackson JB; Ferguson SJ
    Eur J Biochem; 1991 Aug; 199(3):677-83. PubMed ID: 1651241
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dissimilatory nitrate reduction to nitrate, nitrous oxide, and ammonium by Pseudomonas putrefaciens.
    Samuelsson MO
    Appl Environ Microbiol; 1985 Oct; 50(4):812-5. PubMed ID: 4083881
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitrous oxide reduction by members of the family Rhodospirillaceae and the nitrous oxide reductase of Rhodopseudomonas capsulata.
    McEwan AG; Greenfield AJ; Wetzstein HG; Jackson JB; Ferguson SJ
    J Bacteriol; 1985 Nov; 164(2):823-30. PubMed ID: 2997133
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production and reduction of nitrous oxide in agricultural and forest soils.
    Yu K; Chen G; Struwe S; Kjøller A
    Ying Yong Sheng Tai Xue Bao; 2000 Jun; 11(3):385-9. PubMed ID: 11767638
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Do glucosinolate hydrolysis products reduce nitrous oxide emissions from urine affected soil?
    Balvert SF; Luo J; Schipper LA
    Sci Total Environ; 2017 Dec; 603-604():370-380. PubMed ID: 28633114
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dissimilatory ammonia production vs. denitrification in vitro and in inoculated agricultural soil samples.
    Fazzolari E; Mariotti A; Germon JC
    Can J Microbiol; 1990 Nov; 36(11):786-93. PubMed ID: 22049939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sulfide-driven autotrophic denitrification significantly reduces N2O emissions.
    Yang W; Zhao Q; Lu H; Ding Z; Meng L; Chen GH
    Water Res; 2016 Mar; 90():176-184. PubMed ID: 26734778
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Denitrification kinetics indicates nitrous oxide uptake is unaffected by electron competition in Accumulibacter.
    Roy S; Nirakar P; Yong NGH; Stefan W
    Water Res; 2021 Feb; 189():116557. PubMed ID: 33220610
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.