These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 16346725)

  • 1. Influence of easily degradable naturally occurring carbon substrates on biodegradation of monosubstituted phenols by aquatic bacteria.
    Shimp RJ; Pfaender FK
    Appl Environ Microbiol; 1985 Feb; 49(2):394-401. PubMed ID: 16346725
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of naturally occurring humic acids on biodegradation of monosubstituted phenols by aquatic bacteria.
    Shimp R; Pfaender FK
    Appl Environ Microbiol; 1985 Feb; 49(2):402-7. PubMed ID: 16346726
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of adaptation to phenol on biodegradation of monosubstituted phenols by aquatic microbial communities.
    Shimp RJ; Pfaender FK
    Appl Environ Microbiol; 1987 Jul; 53(7):1496-9. PubMed ID: 3662503
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptation to and biodegradation of xenobiotic compounds by microbial communities from a pristine aquifer.
    Aelion CM; Swindoll CM; Pfaender FK
    Appl Environ Microbiol; 1987 Sep; 53(9):2212-7. PubMed ID: 3314709
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anaerobic biodegradation of phenolic compounds in digested sludge.
    Boyd SA; Shelton DR; Berry D; Tiedje JM
    Appl Environ Microbiol; 1983 Jul; 46(1):50-4. PubMed ID: 6614908
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of inorganic and organic nutrients on aerobic biodegradation and on the adaptation response of subsurface microbial communities.
    Swindoll CM; Aelion CM; Pfaender FK
    Appl Environ Microbiol; 1988 Jan; 54(1):212-7. PubMed ID: 3125792
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbial metabolism of 2-chlorophenol, phenol and rho-cresol by Rhodococcus erythropolis M1 in co-culture with Pseudomonas fluorescens P1.
    Goswami M; Shivaraman N; Singh RP
    Microbiol Res; 2005; 160(2):101-9. PubMed ID: 15881826
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of biodegradability of phenolic compounds, characteristic to wastewater of the oil-shale chemical industry, on activated sludge by oxygen uptake measurement.
    Lepik R; Tenno T
    Environ Technol; 2012; 33(1-3):329-39. PubMed ID: 22519119
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetics of phenol and m-cresol biodegradation by an indigenous mixed microbial culture isolated from a sewage treatment plant.
    Saravanan P; Pakshirajan K; Saha P
    J Environ Sci (China); 2008; 20(12):1508-13. PubMed ID: 19209640
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetics of mineralization of phenols in lake water.
    Jones SH; Alexander M
    Appl Environ Microbiol; 1986 May; 51(5):891-7. PubMed ID: 3755316
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methodology for assessing respiration and cellular incorporation of radiolabeled substrates by soil microbial communities.
    Dobbins DC; Pfaender FK
    Microb Ecol; 1988 May; 15(3):257-73. PubMed ID: 24201405
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of chemical concentration and second carbon sources in acclimation of microbial communities for biodegradation.
    Wiggins BA; Alexander M
    Appl Environ Microbiol; 1988 Nov; 54(11):2803-7. PubMed ID: 3214159
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biodegradation of phenolic compounds by sulfate-reducing bacteria from contaminated sediments.
    Mort SL; Dean-Ross D
    Microb Ecol; 1994 Jul; 28(1):67-77. PubMed ID: 24190395
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cresols utilization by Trametes versicolor and substrate interactions in the mixture with phenol.
    Alexieva Z; Yemendzhiev H; Zlateva P
    Biodegradation; 2010 Jul; 21(4):625-35. PubMed ID: 20127146
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Substrate-dependent autoaggregation of Pseudomonas putida CP1 during the degradation of mono-chlorophenols and phenol.
    Farrell A; Quilty B
    J Ind Microbiol Biotechnol; 2002 Jun; 28(6):316-24. PubMed ID: 12032804
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potential for carboxylation-dehydroxylation of phenolic compounds by a methanogenic consortium.
    Bisaillon JG; Lépine F; Beaudet R; Sylvestre M
    Can J Microbiol; 1993 Jul; 39(7):642-8. PubMed ID: 8364800
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biodegradation of phenol and m-cresol by mutated Candida tropicalis.
    Jiang Y; Cai X; Wu D; Ren N
    J Environ Sci (China); 2010; 22(4):621-6. PubMed ID: 20617741
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dual substrates biodegradation kinetics of m-cresol and pyridine by Lysinibacillus cresolivorans.
    Yao H; Ren Y; Deng X; Wei C
    J Hazard Mater; 2011 Feb; 186(2-3):1136-40. PubMed ID: 21194837
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous biodegradation of p-cresol and phenol by the basidiomycete Phanerochaete chrysosporium.
    Kennes C; Lema JM
    J Ind Microbiol; 1994 Sep; 13(5):311-4. PubMed ID: 7765370
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptation of natural microbial communities to degradation of xenobiotic compounds: effects of concentration, exposure time, inoculum, and chemical structure.
    Spain JC; Van Veld PA
    Appl Environ Microbiol; 1983 Feb; 45(2):428-35. PubMed ID: 16346193
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.