These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 16346757)

  • 1. Annual cycle of bacterial secondary production in five aquatic habitats of the okefenokee swamp ecosystem.
    Murray RE; Hodson RE
    Appl Environ Microbiol; 1985 Mar; 49(3):650-5. PubMed ID: 16346757
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbial biomass and utilization of dissolved organic matter in the okefenokee swamp ecosystem.
    Murray RE; Hodson RE
    Appl Environ Microbiol; 1984 Apr; 47(4):685-92. PubMed ID: 16346508
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of macrophyte decomposition on growth rate and community structure of okefenokee swamp bacterioplankton.
    Murray RE; Hodson RE
    Appl Environ Microbiol; 1986 Feb; 51(2):293-301. PubMed ID: 16346986
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contributions of three subsystems of a freshwater marsh to total bacterial secondary productivity.
    Moran MA; Hodson RE
    Microb Ecol; 1992 Sep; 24(2):161-70. PubMed ID: 24193134
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamics of microbial biomass and activity in five habitats of the Okefenokee Swamp ecosystem.
    Moran MA; Maccubbin AE; Benner R; Hodson RE
    Microb Ecol; 1987 Nov; 14(3):203-17. PubMed ID: 24202715
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimating Bacterioplankton Production by Measuring [H]thymidine Incorporation in a Eutrophic Swedish Lake.
    Bell RT; Ahlgren GM; Ahlgren I
    Appl Environ Microbiol; 1983 Jun; 45(6):1709-21. PubMed ID: 16346304
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temporal relationship between the deposition and microbial degradation of lignocellulosic detritus in a Georgia salt marsh and the Okefenokee Swamp.
    Benner R; Maccubbin AE; Hodson RE
    Microb Ecol; 1986 Sep; 12(3):291-8. PubMed ID: 24212682
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Primary and Bacterial Secondary Production in a Southwestern Reservoir.
    Chrzanowski TH; Hubbard JG
    Appl Environ Microbiol; 1988 Mar; 54(3):661-669. PubMed ID: 16347577
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Warming enhances sedimentation and decomposition of organic carbon in shallow macrophyte-dominated systems with zero net effect on carbon burial.
    Velthuis M; Kosten S; Aben R; Kazanjian G; Hilt S; Peeters ETHM; van Donk E; Bakker ES
    Glob Chang Biol; 2018 Nov; 24(11):5231-5242. PubMed ID: 30120802
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bacterioplankton secondary production estimates for coastal waters of british columbia, antarctica, and california.
    Fuhrman JA; Azam F
    Appl Environ Microbiol; 1980 Jun; 39(6):1085-95. PubMed ID: 16345577
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Benthic bacterial and fungal productivity and carbon turnover in a freshwater marsh.
    Buesing N; Gessner MO
    Appl Environ Microbiol; 2006 Jan; 72(1):596-605. PubMed ID: 16391096
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of toxic substances on natural bacterial assemblages determined by means of [h]thymidine incorporation.
    Riemann B; Lindgaard-Jørgensen P
    Appl Environ Microbiol; 1990 Jan; 56(1):75-80. PubMed ID: 16348108
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessing phytoplankton and bacterioplankton production during early spring in lake erken, sweden.
    Bell RT; Kuparinen J
    Appl Environ Microbiol; 1984 Dec; 48(6):1221-30. PubMed ID: 16346681
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strong indirect effects of a submersed aquatic macrophyte, Vallisneria americana, on bacterioplankton densities in a mesotrophic lake.
    Huss AA; Wehr JD
    Microb Ecol; 2004 May; 47(4):305-15. PubMed ID: 15037963
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impacts of chemical contamination on bacterio-phytoplankton coupling.
    Pringault O; Bouvy M; Carre C; Fouilland E; Meddeb M; Mejri K; Leboulanger C; Sakka Hlaili A
    Chemosphere; 2020 Oct; 257():127165. PubMed ID: 32480088
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of solar UV-B radiation on aquatic ecosystems.
    Hader DP
    Adv Space Res; 2000; 26(12):2029-40. PubMed ID: 12038489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decomposition dynamic of two aquatic macrophytes Trapa bispinosa Roxb. and Nelumbo nucifera detritus.
    Zhou X; Feng D; Wen C; Liu D
    Environ Sci Pollut Res Int; 2018 Jun; 25(16):16177-16191. PubMed ID: 29594882
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bacterial growth efficiency in a tropical estuary: seasonal variability subsidized by allochthonous carbon.
    Pradeep Ram AS; Nair S; Chandramohan D
    Microb Ecol; 2007 May; 53(4):591-9. PubMed ID: 17356948
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bacterial production and growth rate estimation from [h]thymidine incorporation for attached and free-living bacteria in aquatic systems.
    Iriberri J; Unanue M; Ayo B; Barcina I; Egea L
    Appl Environ Microbiol; 1990 Feb; 56(2):483-7. PubMed ID: 16348123
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bacterioplankton and organic carbon dynamics in the lower mesohaline chesapeake bay.
    Jonas RB; Tuttle JH
    Appl Environ Microbiol; 1990 Mar; 56(3):747-57. PubMed ID: 16348148
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.