These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 16346784)

  • 1. Impact of nitrogen and phosphorus on [C]lignocellulose decomposition by stream wood microflora.
    Aumen NG; Bottomley PJ; Gregory SV
    Appl Environ Microbiol; 1985 May; 49(5):1113-8. PubMed ID: 16346784
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbial decomposition of wood in streams: distribution of microflora and factors affecting [C]lignocellulose mineralization.
    Aumen NG; Bottomley PJ; Ward GM; Gregory SV
    Appl Environ Microbiol; 1983 Dec; 46(6):1409-16. PubMed ID: 16346448
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nitrogen dynamics in stream wood samples incubated with [C]lignocellulose and potassium [N]nitrate.
    Aumen NG; Bottomley PJ; Gregory SV
    Appl Environ Microbiol; 1985 May; 49(5):1119-23. PubMed ID: 16346785
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemistry and long-term decomposition of roots of Douglas-fir grown under elevated atmospheric carbon dioxide and warming conditions.
    Chen H; Rygiewicz PT; Johnson MG; Harmon ME; Tian H; Tang JW
    J Environ Qual; 2008; 37(4):1327-36. PubMed ID: 18574162
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of pH on Lignin and Cellulose Degradation by Streptomyces viridosporus.
    Pometto AL; Crawford DL
    Appl Environ Microbiol; 1986 Aug; 52(2):246-50. PubMed ID: 16347124
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of carbon and nitrogen supplementation on lignin and cellulose decomposition by a Streptomyces.
    Barder MJ; Crawford DL
    Can J Microbiol; 1981 Aug; 27(8):859-63. PubMed ID: 7296418
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in net ecosystem productivity with forest age following clearcutting of a coastal Douglas-fir forest: testing a mathematical model with eddy covariance measurements along a forest chronosequence.
    Grant RF; Black TA; Humphreys ER; Morgenstern K
    Tree Physiol; 2007 Jan; 27(1):115-31. PubMed ID: 17169913
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Litter Quality Modulates Effects of Dissolved Nitrogen on Leaf Decomposition by Stream Microbial Communities.
    Jabiol J; Lecerf A; Lamothe S; Gessner MO; Chauvet E
    Microb Ecol; 2019 May; 77(4):959-966. PubMed ID: 30899980
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fungal growth, production, and sporulation during leaf decomposition in two streams.
    Suberkropp K
    Appl Environ Microbiol; 2001 Nov; 67(11):5063-8. PubMed ID: 11679327
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tannin, nitrogen, and cell wall composition of green vs. senescent Douglas-fir foliage : Within- and between-stand differences in stands of unequal density.
    Horner JD; Cates RG; Gosz JR
    Oecologia; 1987 Jul; 72(4):515-519. PubMed ID: 28312512
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Foliar nitrogen metabolism of adult Douglas-fir trees is affected by soil water availability and varies little among provenances.
    Du B; Kreuzwieser J; Dannenmann M; Junker LV; Kleiber A; Hess M; Jansen K; Eiblmeier M; Gessler A; Kohnle U; Ensminger I; Rennenberg H; Wildhagen H
    PLoS One; 2018; 13(3):e0194684. PubMed ID: 29566035
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coupling tree-ring delta13C and delta15N to test the effect of fertilization on mature Douglas-fir (Pseudotsuga menziesii var. glauca) stands across the Interior northwest, USA.
    Balster NJ; Marshall JD; Clayton M
    Tree Physiol; 2009 Dec; 29(12):1491-501. PubMed ID: 19855101
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Respiration from coarse woody debris as affected by moisture and saprotroph functional diversity in Western Oregon.
    Progar RA; Schowalter TD; Freitag CM; Morrell JJ
    Oecologia; 2000 Aug; 124(3):426-431. PubMed ID: 28308782
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decomposition of [C]Lignocelluloses of Spartina alterniflora and a Comparison with Field Experiments.
    Wilson JO
    Appl Environ Microbiol; 1985 Mar; 49(3):478-84. PubMed ID: 16346741
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Frequent fire alters nitrogen transformations in ponderosa pine stands of the inland northwest.
    DeLuca TH; Sala A
    Ecology; 2006 Oct; 87(10):2511-22. PubMed ID: 17089660
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Determination of the nutritional value of lignocellulose materials].
    Jalc D; Zelenák I; Bucko J; Bod'a K; Baran M
    Vet Med (Praha); 1983 Jan; 28(1):37-44. PubMed ID: 6404041
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phenology of Douglas-Fir Beetle (Coleoptera: Curculionidae) and Its Role in Douglas-Fir Mortality in Western Washington.
    Freeman MB; Labarge A; Tobin PC
    Environ Entomol; 2020 Feb; 49(1):246-254. PubMed ID: 31820791
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bacterial activity associated with the decomposition of woody substrates in a stream sediment.
    Baker JH; Morita RY; Anderson NH
    Appl Environ Microbiol; 1983 Feb; 45(2):516-21. PubMed ID: 16346200
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tree-ring stable isotopes record the impact of a foliar fungal pathogen on CO(2) assimilation and growth in Douglas-fir.
    Saffell BJ; Meinzer FC; Voelker SL; Shaw DC; Brooks JR; Lachenbruch B; McKay J
    Plant Cell Environ; 2014 Jul; 37(7):1536-47. PubMed ID: 24330052
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of δ(18)O and δ(13)C values between tree-ring whole wood and cellulose in five species growing under two different site conditions.
    Weigt RB; Bräunlich S; Zimmermann L; Saurer M; Grams TE; Dietrich HP; Siegwolf RT; Nikolova PS
    Rapid Commun Mass Spectrom; 2015 Dec; 29(23):2233-44. PubMed ID: 26522315
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.