These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 16346811)

  • 21. Protozoan grazing, bacterial activity, and mineralization in two-stage continuous cultures.
    Bloem J; Starink M; Bär-Gilissen MJ; Cappenberg TE
    Appl Environ Microbiol; 1988 Dec; 54(12):3113-21. PubMed ID: 16347801
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Use of nuclepore filters for counting bacteria by fluorescence microscopy.
    Hobbie JE; Daley RJ; Jasper S
    Appl Environ Microbiol; 1977 May; 33(5):1225-8. PubMed ID: 327932
    [TBL] [Abstract][Full Text] [Related]  

  • 23. How do Planktonic Particle Collection Methods Affect Bacterial Diversity Estimates and Community Composition in Oligo-, Meso- and Eutrophic Lakes?
    Xie G; Tang X; Gong Y; Shao K; Gao G
    Front Microbiol; 2020; 11():593589. PubMed ID: 33343534
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Estimation ofEscherichia coli mortality in seawater by the decrease in(3)H-label and electron transport system activity.
    Martinez J; Garcia-Lara J; Vives-Rego J
    Microb Ecol; 1989 May; 17(3):219-25. PubMed ID: 24197281
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Assessment of microzooplankton grazing on Heterosigma akashiwo using a species-specific approach combining quantitative real-time PCR (QPCR) and dilution methods.
    Demir E; Coyne KJ; Doblin MA; Handy SM; Hutchins DA
    Microb Ecol; 2008 May; 55(4):583-94. PubMed ID: 17609846
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High motility reduces grazing mortality of planktonic bacteria.
    Matz C; Jürgens K
    Appl Environ Microbiol; 2005 Feb; 71(2):921-9. PubMed ID: 15691949
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Size of suspended bacterial cells and association of heterotrophic activity with size fractions of particles in estuarine and coastal waters.
    Palumbo AV; Ferguson RL; Rublee PA
    Appl Environ Microbiol; 1984 Jul; 48(1):157-64. PubMed ID: 16346582
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Predation as a shaping force for the phenotypic and genotypic composition of planktonic bacteria.
    Jürgens K; Matz C
    Antonie Van Leeuwenhoek; 2002 Aug; 81(1-4):413-34. PubMed ID: 12448740
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A quantitative measure of nitrifying bacterial growth.
    Pollard PC
    Water Res; 2006 May; 40(8):1569-76. PubMed ID: 16603221
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of gauze swabs and membrane filters for isolation of Campylobacter spp. from surface water.
    el-Sherbeeny MR; Bopp C; Wells JG; Morris GK
    Appl Environ Microbiol; 1985 Sep; 50(3):611-4. PubMed ID: 4073894
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of temperature on survival of Legionella pneumophila in the aquatic environment.
    Paszko-Kolva C; Shahamat M; Colwell RR
    Microb Releases; 1993 Sep; 2(2):73-9. PubMed ID: 8261169
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantifying 3H-thymidine incorporation rates by a phylogenetically defined group of marine planktonic bacteria (Bacteriodetes phylum).
    van Mooy BA; Devol AH; Keil RG
    Environ Microbiol; 2004 Oct; 6(10):1061-9. PubMed ID: 15344931
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Morphological and compositional changes in a planktonic bacterial community in response to enhanced protozoan grazing.
    Jürgens K; Pernthaler J; Schalla S; Amann R
    Appl Environ Microbiol; 1999 Mar; 65(3):1241-50. PubMed ID: 10049890
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quantification of the filterability of freshwater bacteria through 0.45, 0.22, and 0.1 microm pore size filters and shape-dependent enrichment of filterable bacterial communities.
    Wang Y; Hammes F; Boon N; Egli T
    Environ Sci Technol; 2007 Oct; 41(20):7080-6. PubMed ID: 17993151
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Significance of size and nucleic acid content heterogeneity as measured by flow cytometry in natural planktonic bacteria.
    Gasol JM; Zweifel UL; Peters F; Fuhrman JA; Hagström A
    Appl Environ Microbiol; 1999 Oct; 65(10):4475-83. PubMed ID: 10508078
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Photometric application of the Gram stain method to characterize natural bacterial populations in aquatic environments.
    Saida H; Ytow N; Seki H
    Appl Environ Microbiol; 1998 Feb; 64(2):742-7. PubMed ID: 9464416
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bacterial diversity in aquatic and other environments: what 16S rDNA libraries can tell us.
    Kemp PF; Aller JY
    FEMS Microbiol Ecol; 2004 Feb; 47(2):161-77. PubMed ID: 19712332
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Estimates of bacterial growth from changes in uptake rates and biomass.
    Kirchman D; Ducklow H; Mitchell R
    Appl Environ Microbiol; 1982 Dec; 44(6):1296-307. PubMed ID: 6760812
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Significance of bacteriophages for controlling bacterioplankton growth in a mesotrophic lake.
    Hennes KP; Simon M
    Appl Environ Microbiol; 1995 Jan; 61(1):333-40. PubMed ID: 16534914
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Response of marine bacterioplankton to differential filtration and confinement.
    Ferguson RL; Buckley EN; Palumbo AV
    Appl Environ Microbiol; 1984 Jan; 47(1):49-55. PubMed ID: 6696422
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.