BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 16346860)

  • 21. Morphological changes of rhizobia in peat cultures.
    Feng L; Roughley RJ; Copeland L
    Appl Environ Microbiol; 2002 Mar; 68(3):1064-70. PubMed ID: 11872451
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Competition Among Rhizobium spp. for Nodulation of Leucaena leucocephala in Two Tropical Soils.
    Moawad H; Bohlool BB
    Appl Environ Microbiol; 1984 Jul; 48(1):5-9. PubMed ID: 16346600
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Changes in the physiological and agricultural characteristics of peat-based Bradyrhizobium japonicum inoculants after long-term storage.
    Revellin C; Meunier G; Giraud JJ; Sommer G; Wadoux P; Catroux G
    Appl Microbiol Biotechnol; 2000 Aug; 54(2):206-11. PubMed ID: 10968634
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Competitive Abilities of Rhizobium meliloti Strains Considered to Have Potential as Inoculants.
    van Rensburg HJ; Strijdom BW
    Appl Environ Microbiol; 1982 Jul; 44(1):98-106. PubMed ID: 16346072
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Levels and identities of nonrhizobial microorganisms found in commercial legume inoculant made with nonsterile peat carrier.
    Olsen PE; Rice WA; Bordeleau LM; Demidoff AH; Collins MM
    Can J Microbiol; 1996 Jan; 42(1):72-5. PubMed ID: 8595599
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rhizobia exopolysaccharides: promising biopolymers for use in the formulation of plant inoculants.
    Palhares Farias T; de Melo Castro E; Marucci Pereira Tangerina M; Quintino da Rocha C; Brito Bezerra CW; de Souza Moreira FM
    Braz J Microbiol; 2022 Dec; 53(4):1843-1856. PubMed ID: 36104575
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Maize Inoculation with
    Oliveira ALM; Santos OJAP; Marcelino PRF; Milani KML; Zuluaga MYA; Zucareli C; Gonçalves LSA
    Front Microbiol; 2017; 8():1873. PubMed ID: 29018432
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Survival of Rhizobium phaseoli in Coal-Based Legume Inoculants Applied to Seeds.
    Crawford SL; Berryhill DL
    Appl Environ Microbiol; 1983 Feb; 45(2):703-5. PubMed ID: 16346218
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Assessment of faba bean (Vicia faba) response to inoculation with Rhizobium leguminosarum in clay loam Nile Delta soil.
    Moawad H; Badr El Din SM; Khalafallah MA
    World J Microbiol Biotechnol; 1991 Mar; 7(2):191-5. PubMed ID: 24424931
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Release of Rhizobium spp. from Tropical Soils and Recovery for Immunofluorescence Enumeration.
    Kingsley MT; Bohlool BB
    Appl Environ Microbiol; 1981 Aug; 42(2):241-8. PubMed ID: 16345824
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Survival of Rhizobium phaseoli in Coal-Based Legume Inoculants.
    Paczkowski MW; Berryhill DL
    Appl Environ Microbiol; 1979 Oct; 38(4):612-5. PubMed ID: 16345443
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparison of the Pour, Spread, and Drop Plate Methods for Enumeration of Rhizobium spp. in Inoculants Made from Presterilized Peat.
    Hoben HJ; Somasegaran P
    Appl Environ Microbiol; 1982 Nov; 44(5):1246-7. PubMed ID: 16346141
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fate of genetically modified Rhizobium leguminosarum biovar viciae during long-term storage of commercial inoculants.
    Corich V; Bosco F; Giacomini A; Basaglia M; Squartini A; Nuti MP
    J Appl Bacteriol; 1996 Sep; 81(3):319-28. PubMed ID: 8810059
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High Survivability of Cheese Whey-Grown Rhizobium meliloti Cells upon Exposure to Physical Stress.
    Bissonnette N; Lalande R
    Appl Environ Microbiol; 1988 Jan; 54(1):183-187. PubMed ID: 16347524
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Physiological changes in rhizobia after growth in peat extract may be related to improved desiccation tolerance.
    Casteriano A; Wilkes MA; Deaker R
    Appl Environ Microbiol; 2013 Jul; 79(13):3998-4007. PubMed ID: 23603686
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Agro-industrial waste materials and wastewater sludge for rhizobial inoculant production: a review.
    Ben Rebah F; Prévost D; Yezza A; Tyagi RD
    Bioresour Technol; 2007 Dec; 98(18):3535-46. PubMed ID: 17336515
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The ability of common mastitis-causing pathogens to survive an ensiling period.
    Petersson-Wolfe CS; Masiello S; Hogan JS
    J Dairy Sci; 2011 Oct; 94(10):5027-32. PubMed ID: 21943753
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Changes in the microbial community during bioremediation of gasoline-contaminated soil.
    Leal AJ; Rodrigues EM; Leal PL; Júlio ADL; Fernandes RCR; Borges AC; Tótola MR
    Braz J Microbiol; 2017; 48(2):342-351. PubMed ID: 28034596
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Performance of phaseolus bean rhizobia in soils from the major production sites in the Nile Delta.
    Moawad H; Abd El-Rahim WM; Abd El-Haleem D
    C R Biol; 2004 May; 327(5):445-53. PubMed ID: 15255475
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Short communication: The effect of water temperature on the viability of silage inoculants.
    Mulrooney CN; Kung L
    J Dairy Sci; 2008 Jan; 91(1):236-40. PubMed ID: 18096945
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.