BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 16346863)

  • 1. Growth kinetics of attached iron-oxidizing bacteria.
    Wichlacz PL; Unz RF
    Appl Environ Microbiol; 1985 Aug; 50(2):460-7. PubMed ID: 16346863
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of temperature on the continuous ferrous-iron oxidation kinetics of a predominantly Leptospirillum ferrooxidans culture.
    Breed AW; Dempers CJ; Searby GE; Gardner MN; Rawlings DE; Hansford GS
    Biotechnol Bioeng; 1999 Oct; 65(1):44-53. PubMed ID: 10440670
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics of iron oxidation by Leptospirillum ferriphilum dominated culture at pH below one.
    Ozkaya B; Sahinkaya E; Nurmi P; Kaksonen AH; Puhakka JA
    Biotechnol Bioeng; 2007 Aug; 97(5):1121-7. PubMed ID: 17187444
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of chloride on ferrous iron oxidation by a Leptospirillum ferriphilum-dominated chemostat culture.
    Gahan CS; Sundkvist JE; Dopson M; Sandström A
    Biotechnol Bioeng; 2010 Jun; 106(3):422-31. PubMed ID: 20198654
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-rate acidophilic ferrous iron oxidation in a biofilm airlift reactor and the role of the carrier material.
    Ebrahimi S; Fernández Morales FJ; Kleerebezem R; Heijnen JJ; van Loosdrecht MC
    Biotechnol Bioeng; 2005 May; 90(4):462-72. PubMed ID: 15772947
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetics of ferrous iron oxidation by Leptospirillum bacteria in continuous cultures.
    van Scherpenzeel DA; Boon M; Ras C; Hansford GS; Heijnen JJ
    Biotechnol Prog; 1998; 14(3):425-33. PubMed ID: 9622523
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enriching Acidophilic Fe(II)-oxidizing Bacteria in No-flow, Fed-batch Systems.
    Sheng Y; Kaley B; Burgos WD
    Bio Protoc; 2017 Feb; 7(3):e2130. PubMed ID: 34458451
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic of carbonaceous substrate in an upflow anaerobic sludge sludge blanket (UASB) reactor treating 2,4 dichlorophenol (2,4 DCP).
    Sponza DT; Uluköy A
    J Environ Manage; 2008 Jan; 86(1):121-31. PubMed ID: 17254694
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetics of chemoheterotrophic microbially mediated reduction of ferric EDTA and the nitrosyl adduct of ferrous EDTA for the treatment and regeneration of spent nitric oxide scrubber liquor.
    Dilmore R; Neufeld RD; Hammack RW
    Water Environ Res; 2007 May; 79(5):479-87. PubMed ID: 17571837
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anaerobic oxidation of ferrous iron by purple bacteria, a new type of phototrophic metabolism.
    Ehrenreich A; Widdel F
    Appl Environ Microbiol; 1994 Dec; 60(12):4517-26. PubMed ID: 7811087
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics of an anaerobic moving bed reactor system treating synthetic milk wastewater.
    Ramakant ; Satyanarayan S; Kaul SN
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2002 Oct; 37(9):1737-55. PubMed ID: 12403020
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Iron Kinetics and Evolution of Microbial Populations in Low-pH, Ferrous Iron-Oxidizing Bioreactors.
    Jones RM; Johnson DB
    Environ Sci Technol; 2016 Aug; 50(15):8239-45. PubMed ID: 27377871
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Re-interpretation of the logistic equation for batch microbial growth in relation to Monod kinetics.
    Kargi F
    Lett Appl Microbiol; 2009 Apr; 48(4):398-401. PubMed ID: 19187510
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bacterial growth and substrate degradation by BTX-oxidizing culture in response to salt stress.
    Lee CY; Lin CH
    J Ind Microbiol Biotechnol; 2006 Jan; 33(1):37-44. PubMed ID: 16284744
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbially Mediated Coupling of Fe and N Cycles by Nitrate-Reducing Fe(II)-Oxidizing Bacteria in Littoral Freshwater Sediments.
    Schaedler F; Lockwood C; Lueder U; Glombitza C; Kappler A; Schmidt C
    Appl Environ Microbiol; 2018 Jan; 84(2):. PubMed ID: 29101195
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Addition of citrate to Acidithiobacillus ferrooxidans cultures enables precipitate-free growth at elevated pH and reduces ferric inhibition.
    Li X; Mercado R; Kernan T; West AC; Banta S
    Biotechnol Bioeng; 2014 Oct; 111(10):1940-8. PubMed ID: 24771134
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation and characterization of an acidophilic, heterotrophic bacterium capable of oxidizing ferrous iron.
    Johnson DB; Ghauri MA; Said MF
    Appl Environ Microbiol; 1992 May; 58(5):1423-8. PubMed ID: 1622207
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermodynamic and kinetic characterization using process dynamics: acidophilic ferrous iron oxidation by Leptospirillum ferrooxidans.
    Kleerebezem R; van Loosdrecht MC
    Biotechnol Bioeng; 2008 May; 100(1):49-60. PubMed ID: 18080344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Waste lubricating oil removal in a batch reactor by mixed bacterial consortium: a kinetic study.
    Bhattacharya M; Guchhait S; Biswas D; Datta S
    Bioprocess Biosyst Eng; 2015 Nov; 38(11):2095-106. PubMed ID: 26271337
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Respiratory enzymes of Thiobacillus ferrooxidans. A kinetic study of electron transfer between iron and rusticyanin in sulfate media.
    Blake RC; Shute EA
    J Biol Chem; 1987 Nov; 262(31):14983-9. PubMed ID: 3667619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.