These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 16346863)

  • 21. Isolation and characterization of acidophilic heterotrophic iron-oxidizing bacterium from enrichment culture obtained from acid mine drainage treatment plant.
    Joe SJ; Suto K; Inoie C; Chida T
    J Biosci Bioeng; 2007 Aug; 104(2):117-23. PubMed ID: 17884656
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microbiological oxidation of ferrous iron at low temperatures.
    Ahonen L; Tuovinen OH
    Appl Environ Microbiol; 1989 Feb; 55(2):312-6. PubMed ID: 16347844
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Experimental and mathematical modeling studies on Cr(VI) reduction by CRB, SRB and IRB, individually and in combination.
    Somasundaram V; Philip L; Bhallamudi SM
    J Hazard Mater; 2009 Dec; 172(2-3):606-17. PubMed ID: 19692172
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Inhibitory Kinetics of Free Ammonia (FA) on Ammonia-oxidizing Bacteria (AOB)].
    Sun HW; Yu X; Gao YX; Li WW; Qi GP; Xu J
    Huan Jing Ke Xue; 2018 Sep; 39(9):4294-4301. PubMed ID: 30188074
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of substrate concentrations on the growth of heterotrophic bacteria and algae in secondary facultative ponds.
    Kayombo S; Mbwette TS; Katima JH; Jorgensen SE
    Water Res; 2003 Jul; 37(12):2937-43. PubMed ID: 12767296
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Growth Kinetics of Thiobacillus ferrooxidans Isolated from Arsenic Mine Drainage.
    Braddock JF; Luong HV; Brown EJ
    Appl Environ Microbiol; 1984 Jul; 48(1):48-55. PubMed ID: 16346599
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Kinetics study of pyridine biodegradation by a novel bacterial strain, Rhizobium sp. NJUST18.
    Shen J; Zhang X; Chen D; Liu X; Zhang L; Sun X; Li J; Bi H; Wang L
    Bioprocess Biosyst Eng; 2014 Jun; 37(6):1185-92. PubMed ID: 24425539
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of substrate diffusion and anode potential on kinetic parameters for anode-respiring bacteria.
    Lee HS; Torres CI; Rittmann BE
    Environ Sci Technol; 2009 Oct; 43(19):7571-7. PubMed ID: 19848178
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Physiology of phototrophic iron(II)-oxidizing bacteria: implications for modern and ancient environments.
    Hegler F; Posth NR; Jiang J; Kappler A
    FEMS Microbiol Ecol; 2008 Nov; 66(2):250-60. PubMed ID: 18811650
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Estimation of the intrinsic maximum substrate utilization rate using batch reactors with denitrifying biofilm: a proposed methodology.
    Rabah FK; Dahab MF; Zhang TC
    Water Environ Res; 2007 Aug; 79(8):887-92. PubMed ID: 17824535
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Using ferrous-oxidizing bacteria to enhance the performance of a pH neutral all-iron flow battery.
    Li S; Fan S; Peng X; Zheng D; Li D
    iScience; 2024 Jan; 27(1):108595. PubMed ID: 38174320
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Assessment of the positive effect of salinity on the nitrogen removal performance and microbial composition during the start-up of CANON process.
    Liu S; Yang F; Gong Z; Su Z
    Appl Microbiol Biotechnol; 2008 Aug; 80(2):339-48. PubMed ID: 18592234
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Kinetic comparison of seven strains of 2,4-dichlorophenoxyacetic acid-degrading bacteria.
    Greer LE; Robinson JA; Shelton DR
    Appl Environ Microbiol; 1992 Mar; 58(3):1027-30. PubMed ID: 1575475
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ferrous Iron and Sulfur Oxidation and Ferric Iron Reduction Activities of Thiobacillus ferrooxidans Are Affected by Growth on Ferrous Iron, Sulfur, or a Sulfide Ore.
    Suzuki I; Takeuchi TL; Yuthasastrakosol TD; Oh JK
    Appl Environ Microbiol; 1990 Jun; 56(6):1620-6. PubMed ID: 16348205
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Kinetic studies of phenol degradation by Rhodococcus sp. P1. I. Batch cultivation.
    Straube G; Hensel J; Niedan C; Straube E
    Antonie Van Leeuwenhoek; 1990 Jan; 57(1):29-32. PubMed ID: 2372208
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Anaerobic and aerobic oxidation of ferrous iron at neutral pH by chemoheterotrophic nitrate-reducing bacteria.
    Benz M; Brune A; Schink B
    Arch Microbiol; 1998 Feb; 169(2):159-65. PubMed ID: 9446687
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modeling threshold phenomena, metabolic pathways switches and signals in chemostat-cultivated cells: the Crabtree effect in Saccharomyces cerevisiae.
    Thierie J
    J Theor Biol; 2004 Feb; 226(4):483-501. PubMed ID: 14759654
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Continuous microbial desulfurization of coal--application of a multistage slurry reactor and analysis of the interactions of microbial and chemical kinetics.
    Uhl W; Höne HJ; Beyer M; Klein J
    Biotechnol Bioeng; 1989 Dec; 34(11):1341-56. PubMed ID: 18588077
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparative energetics of glucose and xylose metabolism in recombinant Zymomonas mobilis.
    Lawford HG; Rousseau JD
    Appl Biochem Biotechnol; 2000; 84-86():277-93. PubMed ID: 10849796
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.