These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 16346878)

  • 21. Anaerobic degradation of glycerol by desulfovibrio fructosovorans and D. carbinolicus and evidence for glycerol-dependent utilization of 1,2-propanediol.
    Qatibi AI; Bennisse R; Jana M; Garcia JL
    Curr Microbiol; 1998 May; 36(5):283-90. PubMed ID: 9541565
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Methanogenesis from furfural by defined mixed cultures.
    Boopathy R
    Curr Microbiol; 2002 Jun; 44(6):406-10. PubMed ID: 12000990
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chloroform degradation in methanogenic methanol enrichment cultures and by Methanosarcina barkeri 227.
    Bagley DM; Gossett JM
    Appl Environ Microbiol; 1995 Sep; 61(9):3195-201. PubMed ID: 7574627
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Stable Carbon Isotope Fractionation by Methanosarcina barkeri during Methanogenesis from Acetate, Methanol, or Carbon Dioxide-Hydrogen.
    Krzycki JA; Kenealy WR; Deniro MJ; Zeikus JG
    Appl Environ Microbiol; 1987 Oct; 53(10):2597-9. PubMed ID: 16347476
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Association of hydrogen metabolism with unitrophic or mixotrophic growth of Methanosarcina barkeri on carbon monoxide.
    O'Brien JM; Wolkin RH; Moench TT; Morgan JB; Zeikus JG
    J Bacteriol; 1984 Apr; 158(1):373-5. PubMed ID: 6715282
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Physiological and molecular characterizations of the interactions in two cellulose-to-methane cocultures.
    Lu H; Ng SK; Jia Y; Cai M; Lee PKH
    Biotechnol Biofuels; 2017; 10():37. PubMed ID: 28191038
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Single-cell analysis reveals gene-expression heterogeneity in syntrophic dual-culture of Desulfovibrio vulgaris with Methanosarcina barkeri.
    Qi Z; Pei G; Chen L; Zhang W
    Sci Rep; 2014 Dec; 4():7478. PubMed ID: 25504148
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Acetate, methanol and carbon dioxide as substrates for growth of Methanosarcina barkeri.
    Hutten TJ; Bongaerts HC; van der Drift C; Vogels GD
    Antonie Van Leeuwenhoek; 1980; 46(6):601-10. PubMed ID: 6786216
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Loss of the mtr operon in Methanosarcina blocks growth on methanol, but not methanogenesis, and reveals an unknown methanogenic pathway.
    Welander PV; Metcalf WW
    Proc Natl Acad Sci U S A; 2005 Jul; 102(30):10664-9. PubMed ID: 16024727
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of Organic Acid Anions on the Growth and Metabolism of Syntrophomonas wolfei in Pure Culture and in Defined Consortia.
    Beaty PS; McInerney MJ
    Appl Environ Microbiol; 1989 Apr; 55(4):977-83. PubMed ID: 16347899
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Function of methylcobalamin: coenzyme M methyltransferase isoenzyme II in Methanosarcina barkeri.
    Yeliseev A; Gärtner P; Harms U; Linder D; Thauer RK
    Arch Microbiol; 1993; 159(6):530-6. PubMed ID: 8352643
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Substrate-dependent incorporation of carbon and hydrogen for lipid biosynthesis by Methanosarcina barkeri.
    Wu W; Meador TB; Könneke M; Elvert M; Wegener G; Hinrichs KU
    Environ Microbiol Rep; 2020 Oct; 12(5):555-567. PubMed ID: 32783290
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Relationship of Intracellular Coenzyme F(420) Content to Growth and Metabolic Activity of Methanobacterium bryantii and Methanosarcina barkeri.
    Heine-Dobbernack E; Schoberth SM; Sahm H
    Appl Environ Microbiol; 1988 Feb; 54(2):454-9. PubMed ID: 16347558
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Methane-Linked Mechanisms of Electron Uptake from Cathodes by Methanosarcina barkeri.
    Rowe AR; Xu S; Gardel E; Bose A; Girguis P; Amend JP; El-Naggar MY
    mBio; 2019 Mar; 10(2):. PubMed ID: 30862748
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Kinetic study and mathematical modeling of methanogenesis of acetate using pure cultures of methanogens.
    Yang ST; Okos MR
    Biotechnol Bioeng; 1987 Oct; 30(5):661-7. PubMed ID: 18581453
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Different substrate regimes determine transcriptional profiles and gene co-expression in Methanosarcina barkeri (DSM 800).
    Lin Q; Fang X; Ho A; Li J; Yan X; Tu B; Li C; Li J; Yao M; Li X
    Appl Microbiol Biotechnol; 2017 Oct; 101(19):7303-7316. PubMed ID: 28828628
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Acetate production by methanogenic bacteria.
    Westermann P; Ahring BK; Mah RA
    Appl Environ Microbiol; 1989 Sep; 55(9):2257-61. PubMed ID: 16348006
    [TBL] [Abstract][Full Text] [Related]  

  • 38. One-carbon metabolism in methanogens: evidence for synthesis of a two-carbon cellular intermediate and unification of catabolism and anabolism in Methanosarcina barkeri.
    Kenealy WR; Zeikus JG
    J Bacteriol; 1982 Aug; 151(2):932-41. PubMed ID: 6807965
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sodium ions and an energized membrane required by Methanosarcina barkeri for the oxidation of methanol to the level of formaldehyde.
    Blaut M; Müller V; Fiebig K; Gottschalk G
    J Bacteriol; 1985 Oct; 164(1):95-101. PubMed ID: 3930472
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Expanding the Diet for DIET: Electron Donors Supporting Direct Interspecies Electron Transfer (DIET) in Defined Co-Cultures.
    Wang LY; Nevin KP; Woodard TL; Mu BZ; Lovley DR
    Front Microbiol; 2016; 7():236. PubMed ID: 26973614
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.