These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 16346933)

  • 21. Role of sulfate reduction versus methanogenesis in terminal carbon flow in polluted intertidal sediment of waimea inlet, nelson, new zealand.
    Mountfort DO; Asher RA
    Appl Environ Microbiol; 1981 Aug; 42(2):252-8. PubMed ID: 16345825
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of sulfate on carbon and electron flow during microbial methanogenesis in freshwater sediments.
    Winfrey MR; Zeikus JG
    Appl Environ Microbiol; 1977 Feb; 33(2):275-81. PubMed ID: 848951
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reduction of sulfur compounds in the sediments of a eutrophic lake basin.
    Smith RL; Klug MJ
    Appl Environ Microbiol; 1981 May; 41(5):1230-7. PubMed ID: 16345774
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Carbon and electron flow in mud and sandflat intertidal sediments at delaware inlet, nelson, new zealand.
    Mountfort DO; Asher RA; Mays EL; Tiedje JM
    Appl Environ Microbiol; 1980 Apr; 39(4):686-94. PubMed ID: 16345535
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Partitioning effects during terminal carbon and electron flow in sediments of a low-salinity meltwater pond near Bratina Island, McMurdo Ice Shelf, Antarctica.
    Mountfort DO; Kaspar HF; Downes M; Asher RA
    Appl Environ Microbiol; 1999 Dec; 65(12):5493-9. PubMed ID: 10584008
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Estimating Population Turnover Rates by Relative Quantification Methods Reveals Microbial Dynamics in Marine Sediment.
    Kevorkian R; Bird JT; Shumaker A; Lloyd KG
    Appl Environ Microbiol; 2018 Jan; 84(1):. PubMed ID: 29054869
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Temperature limitation of methanogenesis in aquatic sediments.
    Zeikus JG; Winfrey MR
    Appl Environ Microbiol; 1976 Jan; 31(1):99-107. PubMed ID: 821396
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Thermophilic sulfate reduction and methanogenesis with methanol in a high rate anaerobic reactor.
    Weijma J; Stams AJ; Hulshoff Pol LW; Lettinga G
    Biotechnol Bioeng; 2000 Feb; 67(3):354-63. PubMed ID: 10620266
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biostimulation of petroleum-hydrocarbon-contaminated marine sediment with co-substrate: involved metabolic process and microbial community.
    Zhang Z; Lo IM
    Appl Microbiol Biotechnol; 2015 Jul; 99(13):5683-96. PubMed ID: 25661814
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of acetate turnover in methanogenic and sulfate-reducing sediments by radiolabeling and stable isotope labeling and by use of specific inhibitors: evidence for isotopic exchange.
    de Graaf W; Wellsbury P; Parkes RJ; Cappenberg TE
    Appl Environ Microbiol; 1996 Mar; 62(3):772-7. PubMed ID: 16535268
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biogeochemistry and biodiversity of methane cycling in subsurface marine sediments (Skagerrak, Denmark).
    Parkes RJ; Cragg BA; Banning N; Brock F; Webster G; Fry JC; Hornibrook E; Pancost RD; Kelly S; Knab N; Jørgensen BB; Rinna J; Weightman AJ
    Environ Microbiol; 2007 May; 9(5):1146-61. PubMed ID: 17472631
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of 2-bromo-ethane sulfonate, molybdate and chloroform on acetate consumption by methanogenic and sulfate-reducing populations in freshwater sediment.
    Scholten JC; Conrad R; Stams AJ
    FEMS Microbiol Ecol; 2000 Apr; 32(1):35-42. PubMed ID: 10779617
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Metabolism of trimethylamine, choline, and glycine betaine by sulfate-reducing and methanogenic bacteria in marine sediments.
    King GM
    Appl Environ Microbiol; 1984 Oct; 48(4):719-25. PubMed ID: 16346640
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of Supplemental Electron Donors on the Microbial Reduction of Fe(III), Sulfate, and CO(2) in Coal Mining-Impacted Freshwater Lake Sediments.
    Küsel K; Dorsch T
    Microb Ecol; 2000 Aug; 40(3):238-249. PubMed ID: 11080381
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Turnover of glucose and acetate coupled to reduction of nitrate, ferric iron and sulfate and to methanogenesis in anoxic rice field soil.
    Chidthaisong A; Conrad R
    FEMS Microbiol Ecol; 2000 Jan; 31(1):73-86. PubMed ID: 10620721
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hydrogenotrophic methanogenesis by moderately acid-tolerant methanogens of a methane-emitting acidic peat.
    Horn MA; Matthies C; Küsel K; Schramm A; Drake HL
    Appl Environ Microbiol; 2003 Jan; 69(1):74-83. PubMed ID: 12513979
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hydrogen, acetate, and lactate as electron donors for microbial manganese reduction in a manganese-rich coastal marine sediment.
    Vandieken V; Finke N; Thamdrup B
    FEMS Microbiol Ecol; 2014 Mar; 87(3):733-45. PubMed ID: 24266405
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Butyrate Conversion by Sulfate-Reducing and Methanogenic Communities from Anoxic Sediments of Aarhus Bay, Denmark.
    Ozuolmez D; Moore EK; Hopmans EC; Sinninghe Damsté JS; Stams AJM; Plugge CM
    Microorganisms; 2020 Apr; 8(4):. PubMed ID: 32331369
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Methylmercury decomposition in sediments and bacterial cultures: involvement of methanogens and sulfate reducers in oxidative demethylation.
    Oremland RS; Culbertson CW; Winfrey MR
    Appl Environ Microbiol; 1991 Jan; 57(1):130-7. PubMed ID: 16348388
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Populations of methane-producing bacteria and in vitro methanogenesis in salt marsh and estuarine sediments.
    Jones WJ; Paynter MJ
    Appl Environ Microbiol; 1980 Apr; 39(4):864-71. PubMed ID: 16345550
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.