These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 16346934)

  • 1. Influence of leaching parameters on the biological removal of uranium from coal by a filamentous cyanobacterium.
    Lorenz MG; Krumbein WE
    Appl Environ Microbiol; 1985 Nov; 50(5):1296-300. PubMed ID: 16346934
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A dynamic mathematical model for microbial removal of pyritic sulfur from coal.
    Kargi F; Weissman JG
    Biotechnol Bioeng; 1984 Jun; 26(6):604-12. PubMed ID: 18553377
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bacterial leaching of waste uranium materials.
    Barbic FF; Bracilović DM; Krajincanić BV; Lucić JL
    Z Allg Mikrobiol; 1976; 16(3):179-86. PubMed ID: 788361
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fractal kinetic characteristics of hard-rock uranium leaching with sulfuric acid.
    Zeng S; Li J; Tan K; Zhang S
    R Soc Open Sci; 2018 Sep; 5(9):180403. PubMed ID: 30839685
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Removal of uranium and gross radioactivity from coal bottom ash by CaCl2 roasting followed by HNO3 leaching.
    Lei X; Qi G; Sun Y; Xu H; Wang Y
    J Hazard Mater; 2014 Jul; 276():346-52. PubMed ID: 24922094
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental study on radon exhalation behavior of heap leaching uranium ore column with dilute sulfuric acid.
    Ye Y; Wang Z; Liang T; Ding D; Feng S; Zhong Y
    Environ Sci Pollut Res Int; 2019 Jul; 26(20):20308-20315. PubMed ID: 31093918
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biological removal of pyritic sulfur from coal by the thermophilic organism Sulfolobus acidocaldarius.
    Kargi F; Robinson JM
    Biotechnol Bioeng; 1985 Jan; 27(1):41-9. PubMed ID: 18553575
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reactive transport model of uranium by CO
    Zhang H; Zhang T; He Y
    Environ Sci Pollut Res Int; 2023 May; 30(24):65976-65989. PubMed ID: 37093393
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dataset on leaching properties of coal ashes from Malaysian coal power plant.
    Beddu S; Abd Manan TSB; Zainoodin MM; Khan T; Wan Mohtar WHM; Nurika O; Jusoh H; Yavari S; Kamal NLM; Ghanim AA; Pati S; Abdullah MT
    Data Brief; 2020 Aug; 31():105843. PubMed ID: 32596432
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of microwaves on the leaching kinetics of uraninite from a low grade ore in dilute sulfuric acid.
    Madakkaruppan V; Pius A; T S; Giri N; Sarbajna C
    J Hazard Mater; 2016 Aug; 313():9-17. PubMed ID: 27045621
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long-term leaching of uranium from different waste matrices.
    Patra AC; Sumesh CG; Mohapatra S; Sahoo SK; Tripathi RM; Puranik VD
    J Environ Manage; 2011 Mar; 92(3):919-25. PubMed ID: 21084148
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New Insights into the Penetration Depth of Sulfuric Acid and Leaching Effect in the Sulfuric Acid Curing-Leaching Process of Vanadium-Bearing Stone Coal.
    Li H; Han Y; Jin J; Zhou Z
    ACS Omega; 2021 Jul; 6(27):17599-17608. PubMed ID: 34278145
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of particle size on uranium bioleaching in column reactors from a low-grade uranium ore.
    Wang X; Sun Z; Liu Y; Min X; Guo Y; Li P; Zheng Z
    Bioresour Technol; 2019 Jun; 281():66-71. PubMed ID: 30798088
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The leaching characteristics of selenium from coal fly ashes.
    Wang T; Wang J; Burken JG; Ban H; Ladwig K
    J Environ Qual; 2007; 36(6):1784-92. PubMed ID: 17965381
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Leaching characteristics of selected South African fly ashes: effect of pH on the release of major and trace species.
    Gitari WM; Fatoba OO; Petrik LF; Vadapalli VR
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2009 Feb; 44(2):206-20. PubMed ID: 19123102
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SO2 removal with coal slurry in a double-stirred vessel.
    Sun W; Wang L; Liu J; Wang L; Zhang Y
    Environ Technol; 2013; 34(17-20):2497-501. PubMed ID: 24527610
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recovery of uranium from phosphate ore in the Sheikh Habil-Iran mine: part I- multivariable optimization of leaching process using the response surface method.
    Abdeshahi A; Outokesh M; Nejad DG; Zare MH; Sadeghi MH
    Front Chem; 2023; 11():1292620. PubMed ID: 38124704
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Leaching of Rare Earth Elements from Coal Ashes Using Acidophilic Chemolithotrophic Microbial Communities].
    Muravyov MI; Bulaev AG; Melamud VS; Kondrat'eva TF
    Mikrobiologiia; 2015; 84(2):216-24. PubMed ID: 26263628
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Speciation of major and trace elements leached from coal fly ash and the kinetics involved.
    Hailu SL; McCrindle RI; Seopela MP; Combrinck S
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2019; 54(12):1186-1196. PubMed ID: 31271099
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbial processing of apatite rich low grade Indian uranium ore in bioreactor.
    Abhilash ; Pandey BD
    Bioresour Technol; 2013 Jan; 128():619-23. PubMed ID: 23211489
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.