These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 16346947)

  • 21. Arbinose utilization by xylose-fermenting yeasts and fungi.
    McMillan JD; Boynton BL
    Appl Biochem Biotechnol; 1994; 45-46():569-84. PubMed ID: 8010769
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Performance testing of Zymomonas mobilis metabolically engineered for cofermentation of glucose, xylose, and arabinose.
    Lawford HG; Rousseau JD
    Appl Biochem Biotechnol; 2002; 98-100():429-48. PubMed ID: 12018270
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of aeration on growth, ethanol and polyol accumulation by Spathaspora passalidarum NRRL Y-27907 and Scheffersomyces stipitis NRRL Y-7124.
    Su YK; Willis LB; Jeffries TW
    Biotechnol Bioeng; 2015 Mar; 112(3):457-69. PubMed ID: 25164099
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microbial conversion of xylose into useful bioproducts.
    Jagtap SS; Rao CV
    Appl Microbiol Biotechnol; 2018 Nov; 102(21):9015-9036. PubMed ID: 30141085
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Conversion of pentoses to ethanol by yeasts and fungi.
    Schneider H
    Crit Rev Biotechnol; 1989; 9(1):1-40. PubMed ID: 2670247
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A strain of Meyerozyma guilliermondii isolated from sugarcane juice is able to grow and ferment pentoses in synthetic and bagasse hydrolysate media.
    Martini C; Tauk-Tornisielo SM; Codato CB; Bastos RG; Ceccato-Antonini SR
    World J Microbiol Biotechnol; 2016 May; 32(5):80. PubMed ID: 27038950
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Direct Fermentation of d-Xylose to Ethanol by Kluyveromyces marxianus Strains.
    Margaritis A; Bajpai P
    Appl Environ Microbiol; 1982 Nov; 44(5):1039-41. PubMed ID: 16346128
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Xylose fermentation by genetically modified Saccharomyces cerevisiae 259ST in spent sulfite liquor.
    Helle SS; Murray A; Lam J; Cameron DR; Duff SJ
    Bioresour Technol; 2004 Apr; 92(2):163-71. PubMed ID: 14693449
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Xylose and cellobiose fermentation to ethanol by the thermotolerant methylotrophic yeast Hansenula polymorpha.
    Ryabova OB; Chmil OM; Sibirny AA
    FEMS Yeast Res; 2003 Nov; 4(2):157-64. PubMed ID: 14613880
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genetically engineered Saccharomyces yeast capable of effective cofermentation of glucose and xylose.
    Ho NW; Chen Z; Brainard AP
    Appl Environ Microbiol; 1998 May; 64(5):1852-9. PubMed ID: 9572962
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fermentation Process and Metabolic Flux of Ethanol Production from the Detoxified Hydrolyzate of Cassava Residue.
    Li X; Deng Y; Yang Y; Wei Z; Cheng J; Cao L; Mu D; Luo S; Zheng Z; Jiang S; Wu X
    Front Microbiol; 2017; 8():1603. PubMed ID: 28878755
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparative assessment of fermentative capacity of different xylose-consuming yeasts.
    Veras HCT; Parachin NS; Almeida JRM
    Microb Cell Fact; 2017 Sep; 16(1):153. PubMed ID: 28903764
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluation of UV-C mutagenized Scheffersomyces stipitis strains for ethanol production.
    Geiger M; Gibbons J; West T; Hughes SR; Gibbons W
    J Lab Autom; 2012 Dec; 17(6):417-24. PubMed ID: 22786982
    [TBL] [Abstract][Full Text] [Related]  

  • 34. New approaches for improving the production of the 1st and 2nd generation ethanol by yeast.
    Kurylenko O; Semkiv M; Ruchala J; Hryniv O; Kshanovska B; Abbas C; Dmytruk K; Sibirny A
    Acta Biochim Pol; 2016; 63(1):31-38. PubMed ID: 26619255
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Culture nutrition and physiology impact the inhibitor tolerance of the yeast Pichia stipitis NRRL Y-7124.
    Slininger PJ; Gorsich SW; Liu ZL
    Biotechnol Bioeng; 2009 Feb; 102(3):778-90. PubMed ID: 18823052
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Isolation and characterization of ethanol-producing yeasts from fruits and tree barks.
    Rao RS; Bhadra B; Shivaji S
    Lett Appl Microbiol; 2008 Jul; 47(1):19-24. PubMed ID: 18498317
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Efficient xylose fermentation by the brown rot fungus Neolentinus lepideus.
    Okamoto K; Kanawaku R; Masumoto M; Yanase H
    Enzyme Microb Technol; 2012 Feb; 50(2):96-100. PubMed ID: 22226194
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Metabolic pathway analysis of the xylose-metabolizing yeast protoplast fusant ZLYRHZ7.
    Ge J; Du R; Song G; Zhang Y; Ping W
    J Biosci Bioeng; 2017 Oct; 124(4):386-391. PubMed ID: 28527826
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ethanolic fermentation of pentoses in lignocellulose hydrolysates.
    Hahn-Hägerdal B; Lindén T; Senac T; Skoog K
    Appl Biochem Biotechnol; 1991; 28-29():131-44. PubMed ID: 1929360
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Xylulokinase activity in various yeasts including Saccharomyces cerevisiae containing the cloned xylulokinase gene. Scientific note.
    Deng XX; Ho NW
    Appl Biochem Biotechnol; 1990; 24-25():193-9. PubMed ID: 2162148
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.