These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 16347015)

  • 1. Growth and Metabolism of Lactic Acid Bacteria during and after Malolactic Fermentation of Wines at Different pH.
    Davis CR; Wibowo DJ; Lee TH; Fleet GH
    Appl Environ Microbiol; 1986 Mar; 51(3):539-45. PubMed ID: 16347015
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lactic acid bacteria in the quality improvement and depreciation of wine.
    Lonvaud-Funel A
    Antonie Van Leeuwenhoek; 1999; 76(1-4):317-31. PubMed ID: 10532386
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antimicrobial activity of sulfur dioxide to certain lactic acid bacteria isolated from wines.
    Fang TJ; Dalmasso JP
    Zhonghua Min Guo Wei Sheng Wu Ji Mian Yi Xue Za Zhi; 1993 Aug; 26(3):116-31. PubMed ID: 7982367
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Degradation of free and sulfur-dioxide-bound acetaldehyde by malolactic lactic acid bacteria in white wine.
    Osborne JP; Dubé Morneau A; Mira de Orduña R
    J Appl Microbiol; 2006 Aug; 101(2):474-9. PubMed ID: 16882156
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Occurrence of lactic Acid bacteria during the different stages of vinification and conservation of wines.
    Lafon-Lafourcade S; Carre E; Ribéreau-Gayon P
    Appl Environ Microbiol; 1983 Oct; 46(4):874-80. PubMed ID: 16346401
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of different strains of Oenococcus oeni malolactic bacteria on profile of organic acids and phenolic compounds of red wine cultivars Rondo and Regent growing in a cold region.
    Wojdyło A; Samoticha J; Chmielewska J
    J Food Sci; 2020 Apr; 85(4):1070-1081. PubMed ID: 32125714
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of Malolactic Bacteria Isolated from Oregon Wines.
    Henick-Kling T; Sandine WE; Heatherbell DA
    Appl Environ Microbiol; 1989 Aug; 55(8):2010-2016. PubMed ID: 16347992
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amino acids and volatile compounds in wines from Cabernet Sauvignon and Tempranillo varieties subjected to malolactic fermentation in barrels.
    Hernández-Orte P; Peña A; Pardo I; Cacho J; Ferreira V
    Food Sci Technol Int; 2012 Apr; 18(2):103-12. PubMed ID: 22377626
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wine volatile and amino acid composition after malolactic fermentation: effect of Oenococcus oeni and Lactobacillus plantarum starter cultures.
    Pozo-Bayón MA; G-Alegría E; Polo MC; Tenorio C; Martín-Alvarez PJ; Calvo de la Banda MT; Ruiz-Larrea F; Moreno-Arribas MV
    J Agric Food Chem; 2005 Nov; 53(22):8729-35. PubMed ID: 16248578
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controlling Wine Malolactic Fermentation with Nisin and Nisin-Resistant Strains of Leuconostoc oenos.
    Daeschel MA; Jung DS; Watson BT
    Appl Environ Microbiol; 1991 Feb; 57(2):601-3. PubMed ID: 16348424
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acetaldehyde released by Lactobacillus plantarum enhances accumulation of pyranoanthocyanins in wine during malolactic fermentation.
    Wang S; Li S; Zhao H; Gu P; Chen Y; Zhang B; Zhu B
    Food Res Int; 2018 Jun; 108():254-263. PubMed ID: 29735055
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of malolactic fermentation by Pediococcus damnosus on the composition and sensory profile of Albariño and Caiño white wines.
    Juega M; Costantini A; Bonello F; Cravero MC; Martinez-Rodriguez AJ; Carrascosa AV; Garcia-Moruno E
    J Appl Microbiol; 2014 Mar; 116(3):586-95. PubMed ID: 24206231
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of acetaldehyde- and pyruvic acid-bound sulphur dioxide on wine lactic acid bacteria.
    Wells A; Osborne JP
    Lett Appl Microbiol; 2012 Mar; 54(3):187-94. PubMed ID: 22150460
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolism of SO₂ binding compounds by Oenococcus oeni during and after malolactic fermentation in white wine.
    Jackowetz JN; Mira de Orduña R
    Int J Food Microbiol; 2012 Apr; 155(3):153-7. PubMed ID: 22417710
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combine Use of Selected Schizosaccharomyces pombe and Lachancea thermotolerans Yeast Strains as an Alternative to the Traditional Malolactic Fermentation in Red Wine Production.
    Benito Á; Calderón F; Palomero F; Benito S
    Molecules; 2015 May; 20(6):9510-23. PubMed ID: 26016543
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolomics reveals alterations in both primary and secondary metabolites by wine bacteria.
    Lee JE; Hwang GS; Lee CH; Hong YS
    J Agric Food Chem; 2009 Nov; 57(22):10772-83. PubMed ID: 19919120
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolution of yeasts and lactic Acid bacteria during fermentation and storage of bordeaux wines.
    Fleet GH; Lafon-Lafourcade S; Ribéreau-Gayon P
    Appl Environ Microbiol; 1984 Nov; 48(5):1034-8. PubMed ID: 16346661
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acetaldehyde metabolism by wine lactic acid bacteria.
    Osborne JP; Mira de Orduña R; Pilone GJ; Liu SQ
    FEMS Microbiol Lett; 2000 Oct; 191(1):51-5. PubMed ID: 11004399
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transformation of chemical constituents of lychee wine by simultaneous alcoholic and malolactic fermentations.
    Chen D; Liu SQ
    Food Chem; 2016 Apr; 196():988-95. PubMed ID: 26593581
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Occurrence and properties of bacteriophages of Leuconostoc oenos in Australian wines.
    Davis C; Silveira NF; Fleet GH
    Appl Environ Microbiol; 1985 Oct; 50(4):872-6. PubMed ID: 4083883
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.