These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 16347285)

  • 1. Flowthrough reactor flasks for study of microbial metabolism in sediments.
    Smith RL; Klug MJ
    Appl Environ Microbiol; 1987 Feb; 53(2):371-4. PubMed ID: 16347285
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of fall turnover on terminal carbon metabolism in lake mendota sediments.
    Phelps TJ; Zeikus JG
    Appl Environ Microbiol; 1985 Nov; 50(5):1285-91. PubMed ID: 16346933
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Substrates for sulfate reduction and methane production in intertidal sediments.
    Winfrey MR; Ward DM
    Appl Environ Microbiol; 1983 Jan; 45(1):193-9. PubMed ID: 16346165
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduction of sulfur compounds in the sediments of a eutrophic lake basin.
    Smith RL; Klug MJ
    Appl Environ Microbiol; 1981 May; 41(5):1230-7. PubMed ID: 16345774
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microbial methanogenesis and acetate metabolism in a meromictic lake.
    Winfrey MR; Zeikus JG
    Appl Environ Microbiol; 1979 Feb; 37(2):213-21. PubMed ID: 434805
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Methane fermentation of coastal mud sediment by a two-stage upflow anaerobic sludge blanket (UASB) reactor system.
    Takeno K; Nakashimada Y; Kakizono T; Nishio N
    Appl Microbiol Biotechnol; 2001 Jul; 56(1-2):280-5. PubMed ID: 11499945
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anaerobic metabolism of immediate methane precursors in Lake Mendota.
    Winfrey MR; Zeikus JG
    Appl Environ Microbiol; 1979 Feb; 37(2):244-53. PubMed ID: 434807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sulfide and methane production in sewer sediments: Field survey and model evaluation.
    Liu Y; Tugtas AE; Sharma KR; Ni BJ; Yuan Z
    Water Res; 2016 Feb; 89():142-50. PubMed ID: 26650449
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Methane production from acetate and associated methane fluxes from anoxic coastal sediments.
    Sansone FJ; Martens CS
    Science; 1981 Feb; 211(4483):707-9. PubMed ID: 17776653
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sulfate reducers can outcompete methanogens at freshwater sulfate concentrations.
    Lovley DR; Klug MJ
    Appl Environ Microbiol; 1983 Jan; 45(1):187-92. PubMed ID: 16346164
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation of dimethyl sulfide and methanethiol in anoxic freshwater sediments.
    Lomans BP; Smolders A; Intven LM; Pol A; Op D; Van Der Drift C
    Appl Environ Microbiol; 1997 Dec; 63(12):4741-7. PubMed ID: 16535751
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative aspects of sulfur mineralization in sediments of a eutrophic lake basin.
    King GM; Klug MJ
    Appl Environ Microbiol; 1982 Jun; 43(6):1406-12. PubMed ID: 16346037
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Supplemental Electron Donors on the Microbial Reduction of Fe(III), Sulfate, and CO(2) in Coal Mining-Impacted Freshwater Lake Sediments.
    Küsel K; Dorsch T
    Microb Ecol; 2000 Aug; 40(3):238-249. PubMed ID: 11080381
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Responses of Active Ammonia Oxidizers and Nitrification Activity in Eutrophic Lake Sediments to Nitrogen and Temperature.
    Wu L; Han C; Zhu G; Zhong W
    Appl Environ Microbiol; 2019 Sep; 85(18):. PubMed ID: 31253684
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anaerobic oxalate degradation: widespread natural occurrence in aquatic sediments.
    Smith RL; Oremland RS
    Appl Environ Microbiol; 1983 Jul; 46(1):106-13. PubMed ID: 16346332
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anaerobic Methane-Oxidizing Microbial Community in a Coastal Marine Sediment: Anaerobic Methanotrophy Dominated by ANME-3.
    Bhattarai S; Cassarini C; Gonzalez-Gil G; Egger M; Slomp CP; Zhang Y; Esposito G; Lens PNL
    Microb Ecol; 2017 Oct; 74(3):608-622. PubMed ID: 28389729
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electron donors utilized by sulfate-reducing bacteria in eutrophic lake sediments.
    Smith RL; Klug MJ
    Appl Environ Microbiol; 1981 Jul; 42(1):116-21. PubMed ID: 16345804
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methyl-compounds driven benthic carbon cycling in the sulfate-reducing sediments of South China Sea.
    Xu L; Zhuang GC; Montgomery A; Liang Q; Joye SB; Wang F
    Environ Microbiol; 2021 Feb; 23(2):641-651. PubMed ID: 32506654
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Methanogenesis from methanol and methylamines and acetogenesis from hydrogen and carbon dioxide in the sediments of a eutrophic lake.
    Lovley DR; Klug MJ
    Appl Environ Microbiol; 1983 Apr; 45(4):1310-5. PubMed ID: 16346271
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.