These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 16347285)

  • 21. Enrichment of anaerobic methanotrophs in sulfate-reducing membrane bioreactors.
    Meulepas RJ; Jagersma CG; Gieteling J; Buisman CJ; Stams AJ; Lens PN
    Biotechnol Bioeng; 2009 Oct; 104(3):458-70. PubMed ID: 19544305
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microbial diversity in sediments of saline Qinghai Lake, China: linking geochemical controls to microbial ecology.
    Dong H; Zhang G; Jiang H; Yu B; Chapman LR; Lucas CR; Fields MW
    Microb Ecol; 2006 Jan; 51(1):65-82. PubMed ID: 16400537
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Impact of sulfate pollution on anaerobic biogeochemical cycles in a wetland sediment.
    Baldwin DS; Mitchell A
    Water Res; 2012 Mar; 46(4):965-74. PubMed ID: 22204939
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Influence of pH on Terminal Carbon Metabolism in Anoxic Sediments from a Mildly Acidic Lake.
    Phelps TJ; Zeikus JG
    Appl Environ Microbiol; 1984 Dec; 48(6):1088-95. PubMed ID: 16346672
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A model of microbial activity in lake sediments in response to periodic water-column mixing.
    Gantzer CJ; Stefan HG
    Water Res; 2003 Jul; 37(12):2833-46. PubMed ID: 12767287
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Anthropogenic and Environmental Constraints on the Microbial Methane Cycle in Coastal Sediments.
    Wallenius AJ; Dalcin Martins P; Slomp CP; Jetten MSM
    Front Microbiol; 2021; 12():631621. PubMed ID: 33679659
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Anaerobic microflora of everglades sediments: effects of nutrients on population profiles and activities.
    Drake HL; Aumen NG; Kuhner C; Wagner C; Griesshammer A; Schmittroth M
    Appl Environ Microbiol; 1996 Feb; 62(2):486-93. PubMed ID: 16535236
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Active Sulfate-Reducing Microbial Community in Littoral Sediment of Oligotrophic Lake Constance.
    Wörner S; Pester M
    Front Microbiol; 2019; 10():247. PubMed ID: 30814991
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influences of pond geochemistry, temperature, and freeze-thaw on terminal anaerobic processes occurring in sediments of six ponds of the McMurdo Ice Shelf, near Bratina Island, Antarctica.
    Mountfort DO; Kaspar HF; Asher RA; Sutherland D
    Appl Environ Microbiol; 2003 Jan; 69(1):583-92. PubMed ID: 12514045
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Real-time monitoring of subsurface microbial metabolism with graphite electrodes.
    Wardman C; Nevin KP; Lovley DR
    Front Microbiol; 2014; 5():621. PubMed ID: 25484879
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of sulfate reduction versus methanogenesis in terminal carbon flow in polluted intertidal sediment of waimea inlet, nelson, new zealand.
    Mountfort DO; Asher RA
    Appl Environ Microbiol; 1981 Aug; 42(2):252-8. PubMed ID: 16345825
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of imposed salinity gradients on dissimilatory arsenate reduction, sulfate reduction, and other microbial processes in sediments from two California soda lakes.
    Kulp TR; Han S; Saltikov CW; Lanoil BD; Zargar K; Oremland RS
    Appl Environ Microbiol; 2007 Aug; 73(16):5130-7. PubMed ID: 17601810
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Competitive mechanisms for inhibition of sulfate reduction and methane production in the zone of ferric iron reduction in sediments.
    Lovley DR; Phillips EJ
    Appl Environ Microbiol; 1987 Nov; 53(11):2636-41. PubMed ID: 16347483
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Amino acids as main substrates for sulfate-reducing bacteria in surface sediment of a eutrophic bay.
    Takii S
    J Gen Appl Microbiol; 2003 Dec; 49(6):329-36. PubMed ID: 14747974
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of ammonium and oxygen on methane and nitrous oxide fluxes across sediment-water interface in a eutrophic lake.
    Liikanen A; Martikainen PJ
    Chemosphere; 2003 Sep; 52(8):1287-93. PubMed ID: 12852980
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Partitioning effects during terminal carbon and electron flow in sediments of a low-salinity meltwater pond near Bratina Island, McMurdo Ice Shelf, Antarctica.
    Mountfort DO; Kaspar HF; Downes M; Asher RA
    Appl Environ Microbiol; 1999 Dec; 65(12):5493-9. PubMed ID: 10584008
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In vitro demonstration of anaerobic oxidation of methane coupled to sulphate reduction in sediment from a marine gas hydrate area.
    Nauhaus K; Boetius A; Krüger M; Widdel F
    Environ Microbiol; 2002 May; 4(5):296-305. PubMed ID: 12080959
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Increasing sulfate concentrations result in higher sulfide production and phosphorous mobilization in a shallow eutrophic freshwater lake.
    Chen M; Li XH; He YH; Song N; Cai HY; Wang C; Li YT; Chu HY; Krumholz LR; Jiang HL
    Water Res; 2016 Jun; 96():94-104. PubMed ID: 27023925
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of sulfate on carbon and electron flow during microbial methanogenesis in freshwater sediments.
    Winfrey MR; Zeikus JG
    Appl Environ Microbiol; 1977 Feb; 33(2):275-81. PubMed ID: 848951
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rapid Sediment Accumulation Results in High Methane Effluxes from Coastal Sediments.
    Egger M; Lenstra W; Jong D; Meysman FJ; Sapart CJ; van der Veen C; Röckmann T; Gonzalez S; Slomp CP
    PLoS One; 2016; 11(8):e0161609. PubMed ID: 27560511
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.