These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 16347285)

  • 41. Effect of sulfate addition on methane production and sulfate reduction in a mesophilic acetate-fed anaerobic reactor.
    Yang SL; Tang YQ; Gou M; Jiang X
    Appl Microbiol Biotechnol; 2015 Apr; 99(7):3269-77. PubMed ID: 25427678
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Biogeochemistry and biodiversity of methane cycling in subsurface marine sediments (Skagerrak, Denmark).
    Parkes RJ; Cragg BA; Banning N; Brock F; Webster G; Fry JC; Hornibrook E; Pancost RD; Kelly S; Knab N; Jørgensen BB; Rinna J; Weightman AJ
    Environ Microbiol; 2007 May; 9(5):1146-61. PubMed ID: 17472631
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Comparison of in situ and in vitro rates of methane release in freshwater sediments.
    Kelly CA; Chynoweth DP
    Appl Environ Microbiol; 1980 Aug; 40(2):287-93. PubMed ID: 16345607
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Kinetic analysis of competition between sulfate reducers and methanogens for hydrogen in sediments.
    Lovley DR; Dwyer DF; Klug MJ
    Appl Environ Microbiol; 1982 Jun; 43(6):1373-9. PubMed ID: 16346033
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Sulfur cycling in freshwater sediments: A cryptic driving force of iron deposition and phosphorus mobilization.
    Wu S; Zhao Y; Chen Y; Dong X; Wang M; Wang G
    Sci Total Environ; 2019 Mar; 657():1294-1303. PubMed ID: 30677896
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Methanogenic pathway and archaeal community structure in the sediment of eutrophic Lake Dagow: effect of temperature.
    Glissman K; Chin KJ; Casper P; Conrad R
    Microb Ecol; 2004 Oct; 48(3):389-99. PubMed ID: 15692859
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Metabolic potential of microbial communities from ferruginous sediments.
    Vuillemin A; Horn F; Friese A; Winkel M; Alawi M; Wagner D; Henny C; Orsi WD; Crowe SA; Kallmeyer J
    Environ Microbiol; 2018 Dec; 20(12):4297-4313. PubMed ID: 29968357
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Kinetic parameters of the conversion of methane precursors to methane in a hypereutrophic lake sediment.
    Strayer RF; Tiedje JM
    Appl Environ Microbiol; 1978 Aug; 36(2):330-40. PubMed ID: 16345312
    [TBL] [Abstract][Full Text] [Related]  

  • 49. High-pressure systems for gas-phase free continuous incubation of enriched marine microbial communities performing anaerobic oxidation of methane.
    Deusner C; Meyer V; Ferdelman TG
    Biotechnol Bioeng; 2010 Feb; 105(3):524-33. PubMed ID: 19787639
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Microbial Succession of Anaerobic Chitin Degradation in Freshwater Sediments.
    Wörner S; Pester M
    Appl Environ Microbiol; 2019 Sep; 85(18):. PubMed ID: 31285190
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Rapid removal of nitrate and sulfate in freshwater wetland sediments.
    Whitmire SL; Hamilton SK
    J Environ Qual; 2005; 34(6):2062-71. PubMed ID: 16221826
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effect of 2-bromo-ethane sulfonate, molybdate and chloroform on acetate consumption by methanogenic and sulfate-reducing populations in freshwater sediment.
    Scholten JC; Conrad R; Stams AJ
    FEMS Microbiol Ecol; 2000 Apr; 32(1):35-42. PubMed ID: 10779617
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Anaerobic Methanotrophic Archaea of the ANME-2d Cluster Are Active in a Low-sulfate, Iron-rich Freshwater Sediment.
    Weber HS; Habicht KS; Thamdrup B
    Front Microbiol; 2017; 8():619. PubMed ID: 28446901
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Seasonal rates of methane oxidation in anoxic marine sediments.
    Iversen N; Blackburn TH
    Appl Environ Microbiol; 1981 Jun; 41(6):1295-300. PubMed ID: 16345784
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Geomicrobiological Features of Ferruginous Sediments from Lake Towuti, Indonesia.
    Vuillemin A; Friese A; Alawi M; Henny C; Nomosatryo S; Wagner D; Crowe SA; Kallmeyer J
    Front Microbiol; 2016; 7():1007. PubMed ID: 27446046
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Controls of H
    Cojean ANY; Lehmann MF; Robertson EK; Thamdrup B; Zopfi J
    Front Microbiol; 2020; 11():1158. PubMed ID: 32612583
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Role of methanogens and other bacteria in degradation of dimethyl sulfide and methanethiol in anoxic freshwater sediments.
    Lomans BP; Op den Camp HJ; Pol A; van der Drift C; Vogels GD
    Appl Environ Microbiol; 1999 May; 65(5):2116-21. PubMed ID: 10224009
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Sulfide and methane production in sewer sediments.
    Liu Y; Ni BJ; Ganigué R; Werner U; Sharma KR; Yuan Z
    Water Res; 2015 Mar; 70():350-9. PubMed ID: 25543244
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Seasonal iron‑sulfur interactions and the stimulated phosphorus mobilization in freshwater lake sediments.
    Zhao Y; Wu S; Yu M; Zhang Z; Wang X; Zhang S; Wang G
    Sci Total Environ; 2021 May; 768():144336. PubMed ID: 33453539
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Co-existence of Methanogenesis and Sulfate Reduction with Common Substrates in Sulfate-Rich Estuarine Sediments.
    Sela-Adler M; Ronen Z; Herut B; Antler G; Vigderovich H; Eckert W; Sivan O
    Front Microbiol; 2017; 8():766. PubMed ID: 28529500
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.