These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 16347302)
1. Properties of the glucose transport system in some deep-sea bacteria. Delong EF; Yayanos AA Appl Environ Microbiol; 1987 Mar; 53(3):527-32. PubMed ID: 16347302 [TBL] [Abstract][Full Text] [Related]
2. Thermal Inactivation of a Deep-Sea Barophilic Bacterium, Isolate CNPT-3. Yayanos AA; Dietz AS Appl Environ Microbiol; 1982 Jun; 43(6):1481-9. PubMed ID: 16346041 [TBL] [Abstract][Full Text] [Related]
3. Sugar transport. Properties of mutant bacteria defective in proteins of the phosphoenolpyruvate: sugar phosphotransferase system. Simoni RD; Roseman S; Saier MH J Biol Chem; 1976 Nov; 251(21):6584-97. PubMed ID: 789368 [TBL] [Abstract][Full Text] [Related]
4. Phosphoenolpyruvate:glycose phosphotransferase system in species of Vibrio, a widely distributed marine bacterial genus. Meadow ND; Revuelta R; Chen VN; Colwell RR; Roseman S J Bacteriol; 1987 Nov; 169(11):4893-900. PubMed ID: 3667518 [TBL] [Abstract][Full Text] [Related]
5. Occurrence and Characterization of a Phosphoenolpyruvate: Glucose Phosphotransferase System in a Marine Bacterium, Serratia marinorubra. Hodson RE; Azam F Appl Environ Microbiol; 1979 Dec; 38(6):1086-91. PubMed ID: 16345474 [TBL] [Abstract][Full Text] [Related]
6. Enzymatic profiles of 11 barophilic bacteria under in situ conditions: evidence for pressure modulation of phenotype. Straube WL; O'Brien M; Davis K; Colwell RR Appl Environ Microbiol; 1990 Mar; 56(3):812-4. PubMed ID: 2317048 [TBL] [Abstract][Full Text] [Related]
7. Defective enzyme II-BGlc of the phosphoenolpyruvate:sugar phosphotransferase system leading to uncoupling of transport and phosphorylation in Salmonella typhimurium. Postma PW J Bacteriol; 1981 Aug; 147(2):382-9. PubMed ID: 6267008 [TBL] [Abstract][Full Text] [Related]
8. Sugar transport by the bacterial phosphotransferase system. Phosphoryl transfer reactions catalyzed by enzyme I of Salmonella typhimurium. Weigel N; Kukuruzinska MA; Nakazawa A; Waygood EB; Roseman S J Biol Chem; 1982 Dec; 257(23):14477-91. PubMed ID: 6754730 [TBL] [Abstract][Full Text] [Related]
9. Biochemical function and ecological significance of novel bacterial lipids in deep-sea procaryotes. Delong EF; Yayanos AA Appl Environ Microbiol; 1986 Apr; 51(4):730-7. PubMed ID: 16347037 [TBL] [Abstract][Full Text] [Related]
10. Sugar transport by the bacterial phosphotransferase system. Isolation and characterization of a glucose-specific phosphocarrier protein (IIIGlc) from Salmonella typhimurium. Meadow ND; Roseman S J Biol Chem; 1982 Dec; 257(23):14526-37. PubMed ID: 6754734 [TBL] [Abstract][Full Text] [Related]
11. Sugar transport by the bacterial phosphotransferase system. In vivo regulation of lactose transport in Escherichia coli by IIIGlc, a protein of the phosphoenolpyruvate:glycose phosphotransferase system. Mitchell WJ; Saffen DW; Roseman S J Biol Chem; 1987 Nov; 262(33):16254-60. PubMed ID: 2824484 [TBL] [Abstract][Full Text] [Related]
12. [2 phosphotransferase systems that control the second stage of phosphoenolpyruvate-dependent glucose phosphorylation in E. coli]. Golub EI; Garaev MM Biokhimiia; 1975; 40(1):25-31. PubMed ID: 1095077 [TBL] [Abstract][Full Text] [Related]
13. Sugar transport by the bacterial phosphotransferase system. The glucose receptors of the Salmonella typhimurium phosphotransferase system. Stock JB; Waygood EB; Meadow ND; Postma PW; Roseman S J Biol Chem; 1982 Dec; 257(23):14543-52. PubMed ID: 6292227 [TBL] [Abstract][Full Text] [Related]
14. Sugar transport. 2nducer exclusion and regulation of the melibiose, maltose, glycerol, and lactose transport systems by the phosphoenolpyruvate:sugar phosphotransferase system. Saier MH; Roseman S J Biol Chem; 1976 Nov; 251(21):6606-15. PubMed ID: 789370 [TBL] [Abstract][Full Text] [Related]
15. Fractionation and characterization of the phosphoenolpyruvate: fructose 1-phosphotransferase system from Pseudomonas aeruginosa. Durham DR; Phibbs PV J Bacteriol; 1982 Feb; 149(2):534-41. PubMed ID: 6799490 [TBL] [Abstract][Full Text] [Related]
16. The phosphoenolpyruvate:glucose phosphotransferase system of Salmonella typhimurium. The phosphorylated form of IIIGlc. Nelson SO; Schuitema AR; Postma PW Eur J Biochem; 1986 Jan; 154(2):337-41. PubMed ID: 3510871 [TBL] [Abstract][Full Text] [Related]
17. Adaptation of the membrane lipids of a deep-sea bacterium to changes in hydrostatic pressure. DeLong EF; Yayanos AA Science; 1985 May; 228(4703):1101-3. PubMed ID: 3992247 [TBL] [Abstract][Full Text] [Related]
18. Competition between two pathways for sugar uptake by the phosphoenolpyruvate-dependent sugar phosphotransferase system in Salmonella typhimurium. Scholte BJ; Postma PW Eur J Biochem; 1981; 114(1):51-8. PubMed ID: 7011803 [TBL] [Abstract][Full Text] [Related]
19. Dependency of sugar transport and phosphorylation by the phosphoenolpyruvate-dependent phosphotransferase system on membranous phosphatidylethanolamine in Escherichia coli: studies with a pssA mutant lacking phosphatidylserine synthase. Aboulwafa M; Hvorup R; Saier MH Arch Microbiol; 2004 Jan; 181(1):26-34. PubMed ID: 14634719 [TBL] [Abstract][Full Text] [Related]
20. Properties of the glucose phosphotransferase system of Clostridium acetobutylicum NCIB 8052. Mitchell WJ; Shaw JE; Andrews L Appl Environ Microbiol; 1991 Sep; 57(9):2534-9. PubMed ID: 1768126 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]