BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 16347392)

  • 21. Simultaneous and Enhanced Production of Thermostable Amylases and Ethanol from Starch by Cocultures of Clostridium thermosulfurogenes and Clostridium thermohydrosulfuricum.
    Hyun HH; Zeikus JG
    Appl Environ Microbiol; 1985 May; 49(5):1174-81. PubMed ID: 16346791
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Purification, biochemical characterization, and gene cloning of a new extracellular thermotolerant and glucose tolerant maltooligosaccharide-forming alpha-amylase from an endophytic ascomycete Fusicoccum sp. BCC4124.
    Champreda V; Kanokratana P; Sriprang R; Tanapongpipat S; Eurwilaichitr L
    Biosci Biotechnol Biochem; 2007 Aug; 71(8):2010-20. PubMed ID: 17690465
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Substrate specificity and detailed characterization of a bifunctional amylase-pullulanase enzyme from Bacillus circulans F-2 having two different active sites on one polypeptide.
    Kim CH; Kim YS
    Eur J Biochem; 1995 Feb; 227(3):687-93. PubMed ID: 7532585
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Amylolytic Enzymes Acquired from L-Lactic Acid Producing Enterococcus faecium K-1 and Improvement of Direct Lactic Acid Production from Cassava Starch.
    Unban K; Kanpiengjai A; Takata G; Uechi K; Lee WC; Khanongnuch C
    Appl Biochem Biotechnol; 2017 Sep; 183(1):155-170. PubMed ID: 28236189
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Isolation, characterization, and identification of Geobacillus thermodenitrificans HRO10, an alpha-amylase and alpha-glucosidase producing thermophile.
    Ezeji TC; Wolf A; Bahl H
    Can J Microbiol; 2005 Aug; 51(8):685-93. PubMed ID: 16234866
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Purification and properties of an amylopullulanase, a glucoamylase, and an alpha-glucosidase in the amylolytic enzyme system of Thermoanaerobacterium thermosaccharolyticum.
    Ganghofner D; Kellermann J; Staudenbauer WL; Bronnenmeier K
    Biosci Biotechnol Biochem; 1998 Feb; 62(2):302-8. PubMed ID: 9532787
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Starch utilization by Bacteroides ovatus isolated from the human large intestine.
    Degnan BA; Macfarlane S; Quigley ME; Macfarlane GT
    Curr Microbiol; 1997 May; 34(5):290-6. PubMed ID: 9099629
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Gene cloning, heterologous expression, and characterization of a high maltose-producing α-amylase of Rhizopus oryzae.
    Li S; Zuo Z; Niu D; Singh S; Permaul K; Prior BA; Shi G; Wang Z
    Appl Biochem Biotechnol; 2011 Jul; 164(5):581-92. PubMed ID: 21243443
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Production of amylase by Arthrobacter psychrolactophilus.
    Smith MR; Zahnley JC
    J Ind Microbiol Biotechnol; 2005 Jul; 32(7):277-83. PubMed ID: 15931519
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Application of different feeding strategies in fed batch culture for pullulanase production using sago starch.
    R S; M S M; E M S; K O NA; A A S; K K
    Carbohydr Polym; 2014 Feb; 102():962-9. PubMed ID: 24507370
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Use of co-immobilized beta-amylase and pullulanase in reduction of saccharification time of starch and increase in maltose yield.
    Atia KS; Ismail SA; El-Arnaouty MB; Dessouki AM
    Biotechnol Prog; 2003; 19(3):853-7. PubMed ID: 12790649
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterisation of three starch degrading enzymes: thermostable β-amylase, maltotetraogenic and maltogenic α-amylases.
    Derde LJ; Gomand SV; Courtin CM; Delcour JA
    Food Chem; 2012 Nov; 135(2):713-21. PubMed ID: 22868150
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Gene cloning and enzymatic characterization of alkali-tolerant type I pullulanase from Exiguobacterium acetylicum.
    Qiao Y; Peng Q; Yan J; Wang H; Ding H; Shi B
    Lett Appl Microbiol; 2015 Jan; 60(1):52-9. PubMed ID: 25273816
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Production and properties of alpha-amylase from Bacillus sp. BKL20.
    Kubrak OI; Storey JM; Storey KB; Lushchak VI
    Can J Microbiol; 2010 Apr; 56(4):279-88. PubMed ID: 20453894
    [TBL] [Abstract][Full Text] [Related]  

  • 35. EFFECT OF CARBON SOURCES ON FORMATION OF ALPHA-AMYLASE BY BACILLUS STEAROTHERMOPHILUS.
    WELKER NE; CAMPBELL LL
    J Bacteriol; 1963 Oct; 86(4):681-6. PubMed ID: 14066461
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cloning of the thermostable alpha-amylase gene from Pyrococcus woesei in Escherichia coli: isolation and some properties of the enzyme.
    Grzybowska B; Szweda P; Synowiecki J
    Mol Biotechnol; 2004 Feb; 26(2):101-10. PubMed ID: 14764935
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Metabolism of the reserve polysaccharide of Streptococcus mitis. Some properties of a pullulanase.
    Walker GJ
    Biochem J; 1968 Jun; 108(1):33-40. PubMed ID: 5690538
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interaction of hydrolytic and phosphorolytic enzymes of starch metabolism in Kalanchoë daigremontiana.
    Schilling N; Dittrich P
    Planta; 1979 Dec; 147(3):210-5. PubMed ID: 24311034
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Regulation and localization of amylolytic enzymes in Clostridium acetobutylicum ATCC 824.
    Annous BA; Blaschek HP
    Appl Environ Microbiol; 1990 Aug; 56(8):2559-61. PubMed ID: 1698349
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Halophilic alkali- and thermostable amylase from a novel polyextremophilic Amphibacillus sp. NM-Ra2.
    Mesbah NM; Wiegel J
    Int J Biol Macromol; 2014 Sep; 70():222-9. PubMed ID: 25008132
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.