These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 16347505)

  • 1. Oxidation of gaseous and volatile hydrocarbons by selected alkene-utilizing bacteria.
    van Ginkel CG; Welten HG; de Bont JA
    Appl Environ Microbiol; 1987 Dec; 53(12):2903-7. PubMed ID: 16347505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Epoxidation of short-chain alkenes by resting-cell suspensions of propane-grown bacteria.
    Hou CT; Patel R; Laskin AI; Barnabe N; Barist I
    Appl Environ Microbiol; 1983 Jul; 46(1):171-7. PubMed ID: 16346338
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cometabolic degradation of chlorinated alkenes by alkene monooxygenase in a propylene-grown Xanthobacter strain.
    Ensign SA; Hyman MR; Arp DJ
    Appl Environ Microbiol; 1992 Sep; 58(9):3038-46. PubMed ID: 1444418
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aliphatic and chlorinated alkenes and epoxides as inducers of alkene monooxygenase and epoxidase activities in Xanthobacter strain Py2.
    Ensign SA
    Appl Environ Microbiol; 1996 Jan; 62(1):61-6. PubMed ID: 8572713
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification and characterization of epoxide carboxylase activity in cell extracts of Nocardia corallina B276.
    Allen JR; Ensign SA
    J Bacteriol; 1998 Apr; 180(8):2072-8. PubMed ID: 9555888
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microbial Oxidation of Gaseous Hydrocarbons: Production of Secondary Alcohols from Corresponding n-Alkanes by Methane-Utilizing Bacteria.
    Patel RN; Hou CT; Laskin AI; Felix A; Derelanko P
    Appl Environ Microbiol; 1980 Apr; 39(4):720-6. PubMed ID: 16345537
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alkene monooxygenase from Xanthobacter strain Py2. Purification and characterization of a four-component system central to the bacterial metabolism of aliphatic alkenes.
    Small FJ; Ensign SA
    J Biol Chem; 1997 Oct; 272(40):24913-20. PubMed ID: 9312093
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbial oxidation of hydrocarbons and related compounds by whole-cell suspensions of the methane-oxidizing bacterium h-2.
    Imai T; Takigawa H; Nakagawa S; Shen GJ; Kodama T; Minoda Y
    Appl Environ Microbiol; 1986 Dec; 52(6):1403-6. PubMed ID: 16347244
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidation of alkyl-substituted cyclic hydrocarbons by a Nocardia during growth on n-alkanes.
    DAVIS JB; RAYMOND RL
    Appl Microbiol; 1961 Sep; 9(5):383-8. PubMed ID: 13720182
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microbial oxidation of gaseous hydrocarbons: production of alcohols and methyl ketones from their corresponding n-alkanes by methylotrophic bacteria.
    Hou CT; Patel RN; Laski AI; Marczak I; Barnabe N
    Can J Microbiol; 1981 Jan; 27(1):107-15. PubMed ID: 6783282
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anaerobic oxidation of n-alkenes by sulphate-reducing bacteria from the genus Desulfatiferula: n-ketones as potential metabolites.
    Grossi V; Cravo-Laureau C; Rontani JF; Cros M; Hirschler-Réa A
    Res Microbiol; 2011 Nov; 162(9):915-22. PubMed ID: 21810468
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heterologous Expression of Mycobacterium Alkene Monooxygenases in Gram-Positive and Gram-Negative Bacterial Hosts.
    McCarl V; Somerville MV; Ly MA; Henry R; Liew EF; Wilson NL; Holmes AJ; Coleman NV
    Appl Environ Microbiol; 2018 Aug; 84(15):. PubMed ID: 29802186
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microbial oxidation of gaseous hydrocarbons: epoxidation of C2 to C4 n-alkenes by methylotrophic bacteria.
    Hou CT; Patel R; Laskin AI; Barnabe N
    Appl Environ Microbiol; 1979 Jul; 38(1):127-34. PubMed ID: 39502
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Degradation of trichloroethene by a linear-plasmid-encoded alkene monooxygenase in Rhodococcus corallinus (Nocardia corallina) B-276.
    Saeki H; Akira M; Furuhashi K; Averhoff B; Gottschalk G
    Microbiology (Reading); 1999 Jul; 145 ( Pt 7)():1721-1730. PubMed ID: 10439411
    [TBL] [Abstract][Full Text] [Related]  

  • 15. METHYL KETONE METABOLISM IN HYDROCARBON-UTILIZING MYCOBACTERIA.
    LUKINS HB; FOSTER JW
    J Bacteriol; 1963 May; 85(5):1074-87. PubMed ID: 14043998
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Growth, natural relationships, cellular fatty acids and metabolic adaptation of sulfate-reducing bacteria that utilize long-chain alkanes under anoxic conditions.
    Aeckersberg F; Rainey FA; Widdel F
    Arch Microbiol; 1998 Oct; 170(5):361-9. PubMed ID: 9818355
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cuticular hydrocarbons and novel alkenediol iacetates from wheat stem sawfly (Cephus cinctus): natural oxidation to pheromone components.
    Bartelt RJ; Cossé AA; Petroski RJ; Weaver DK
    J Chem Ecol; 2002 Feb; 28(2):385-405. PubMed ID: 11925075
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbial Oxidation of Gaseous Hydrocarbons: Production of Methylketones from Corresponding n-Alkanes by Methane-Utilizing Bacteria.
    Patel RN; Hou CT; Laskin AI; Felix A; Derelanko P
    Appl Environ Microbiol; 1980 Apr; 39(4):727-33. PubMed ID: 16345538
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbial oxidation of gaseous hydrocarbons. II. Hydroxylation of alkanes and epoxidation of alkenes by cell-free particulate fractions of methane-utilizing bacteria.
    Patel RN; Hou CT; Laskin AI; Felix A; Derelanko P
    J Bacteriol; 1979 Aug; 139(2):675-9. PubMed ID: 222739
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxidation of 1-alkenes to 1,2-epoxyalkanes by Pseudomonas oleovorans.
    Abbott BJ; Hou CT
    Appl Microbiol; 1973 Jul; 26(1):86-91. PubMed ID: 4726833
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.