These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 16347712)

  • 21. Underestimation of DNA synthesis by [h]thymidine incorporation in marine bacteria.
    Jeffrey WH; Paul JH
    Appl Environ Microbiol; 1988 Dec; 54(12):3165-8. PubMed ID: 16347806
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bacterial production in a mesohumic lake estimated from [(14)C]leucine incorporation rate.
    Tulonen T
    Microb Ecol; 1993 Nov; 26(3):201-17. PubMed ID: 24190090
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inorganic phosphorus stimulation of bacterioplankton production in a meso-eutrophic lake.
    Toolan T; Wehr JD; Findlay S
    Appl Environ Microbiol; 1991 Jul; 57(7):2074-8. PubMed ID: 16348528
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of 5-fluoro-2'-deoxyuridine on [h]thymidine incorporation by bacterioplankton in the waters of southwest Florida.
    Jeffrey WH; Paul JH
    Appl Environ Microbiol; 1988 Feb; 54(2):331-6. PubMed ID: 16347546
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The conversion factor between thymidine incorporation and bacterial production in Escherichia coli.
    Martinez J; Vives-Rego J
    Microbiologica; 1987 Oct; 10(4):371-5. PubMed ID: 3320687
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Assessment of [h]thymidine incorporation into DNA as a method to determine bacterial productivity in stream bed sediments.
    Kaplan LA; Bott TL; Bielicki JK
    Appl Environ Microbiol; 1992 Nov; 58(11):3614-21. PubMed ID: 16348806
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Estimating bacterial production in marine waters from the simultaneous incorporation of thymidine and leucine.
    Chin-Leo G; Kirchman DL
    Appl Environ Microbiol; 1988 Aug; 54(8):1934-9. PubMed ID: 16347706
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spatial and Temporal Variations in Bacterial Macromolecule Labeling with [methyl-H]Thymidine in a Hypertrophic Lake.
    Robarts RD; Wicks RJ; Sephton LM
    Appl Environ Microbiol; 1986 Dec; 52(6):1368-73. PubMed ID: 16347241
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Correlation of nonspecific macromolecular labeling with environmental parameters during [(3)H]Thymidine incorporation in the waters of southwest florida.
    Jeffrey WH; Paul JH; Cazares LH; Deflaun MF; David AW
    Microb Ecol; 1990 Dec; 20(1):21-35. PubMed ID: 24193961
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Validity of the tritiated thymidine method for estimating bacterial growth rates: measurement of isotope dilution during DNA synthesis.
    Pollard PC; Moriarty DJ
    Appl Environ Microbiol; 1984 Dec; 48(6):1076-83. PubMed ID: 6517579
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nutrient enrichment and nutrient regeneration stimulate bacterioplankton growth.
    Chrzanowski TH; Sterner RW; Elser JJ
    Microb Ecol; 1995 May; 29(3):221-30. PubMed ID: 24185342
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Measurement of the incorporation rates of four amino acids into proteins for estimating bacterial production.
    Servais P
    Microb Ecol; 1995 Mar; 29(2):115-28. PubMed ID: 24186718
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Growth Rates of Bacterial Communities in Soils at Varying pH: A Comparison of the Thymidine and Leucine Incorporation Techniques.
    Bååth E
    Microb Ecol; 1998 Nov; 36(3):316-327. PubMed ID: 9852511
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of transforming growth factor-beta on the production of immunoreactive insulin-like growth factor I and progesterone and on [3H]thymidine incorporation in porcine granulosa cell cultures.
    Mondschein JS; Canning SF; Hammond JM
    Endocrinology; 1988 Oct; 123(4):1970-6. PubMed ID: 3262054
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Uptake and incorporation of thymidine by bacterial isolates from an upwelling environment.
    Davis CL
    Appl Environ Microbiol; 1989 May; 55(5):1267-72. PubMed ID: 16347916
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Neuronal stimulation of (3H)thymidine incorporation by primary cultures of highly purified non-neuronal cells.
    McCarthy KD; Partlow LM
    Brain Res; 1976 Sep; 114(3):415-26. PubMed ID: 953764
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evidence that fluoride-stimulated 3[H]-thymidine incorporation in embryonic chick calvarial cell cultures is dependent on the presence of a bone cell mitogen, sensitive to changes in the phosphate concentration, and modulated by systemic skeletal effectors.
    Farley JR; Tarbaux N; Hall S; Baylink DJ
    Metabolism; 1988 Oct; 37(10):988-95. PubMed ID: 3173113
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Regulation of planktonic bacterial growth rates: The effects of temperature and resources.
    Felip M; Pace ML; Cole JJ
    Microb Ecol; 1996 Jan; 31(1):15-28. PubMed ID: 24185633
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Relationship between the expression of estrogen-regulated genes and estrogen-stimulated proliferation of MCF-7 mammary tumor cells.
    Aitken SC; Lippman ME; Kasid A; Schoenberg DR
    Cancer Res; 1985 Jun; 45(6):2608-15. PubMed ID: 3986799
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Benthic bacterial production and protozoan predation in a silty freshwater environment.
    Wieltschnig C; Fischer UR; Kirschner AK; Velimirov B
    Microb Ecol; 2003 Jul; 46(1):62-72. PubMed ID: 12739079
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.