These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 16347770)

  • 1. Kinetics of Insoluble Cellulose Fermentation by Continuous Cultures of Ruminococcus albus.
    Pavlostathis SG; Miller TL; Wolin MJ
    Appl Environ Microbiol; 1988 Nov; 54(11):2660-3. PubMed ID: 16347770
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fermentation of Insoluble Cellulose by Continuous Cultures of Ruminococcus albus.
    Pavlostathis SG; Miller TL; Wolin MJ
    Appl Environ Microbiol; 1988 Nov; 54(11):2655-9. PubMed ID: 16347769
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics and metabolism of cellulose degradation at high substrate concentrations in steady-state continuous cultures of Clostridium cellulolyticum on a chemically defined medium.
    Desvaux M; Guedon E; Petitdemange H
    Appl Environ Microbiol; 2001 Sep; 67(9):3837-45. PubMed ID: 11525975
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon flux distribution and kinetics of cellulose fermentation in steady-state continuous cultures of Clostridium cellulolyticum on a chemically defined medium.
    Desvaux M; Guedon E; Petitdemange H
    J Bacteriol; 2001 Jan; 183(1):119-30. PubMed ID: 11114908
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3-Phenylpropanoic Acid Improves the Affinity of Ruminococcus albus for Cellulose in Continuous Culture.
    Morrison M; Mackie RI; Kistner A
    Appl Environ Microbiol; 1990 Oct; 56(10):3220-2. PubMed ID: 16348327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NMR study of cellulose and wheat straw degradation by Ruminococcus albus 20.
    Matulova M; Nouaille R; Capek P; Péan M; Delort AM; Forano E
    FEBS J; 2008 Jul; 275(13):3503-11. PubMed ID: 18513327
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioconversion of Cellulose to Acetate with Pure Cultures of Ruminococcus albus and a Hydrogen-Using Acetogen.
    Miller TL; Wolin MJ
    Appl Environ Microbiol; 1995 Nov; 61(11):3832-5. PubMed ID: 16535158
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of dilution rate and pH on the ruminal cellulolytic bacterium Fibrobacter succinogenes S85 in cellulose-fed continuous culture.
    Weimer PJ
    Arch Microbiol; 1993; 160(4):288-94. PubMed ID: 8239881
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anaerobic bioconversion of cellulose by Ruminococcus albus, Methanobrevibacter smithii, and Methanosarcina barkeri.
    Miller TL; Currenti E; Wolin MJ
    Appl Microbiol Biotechnol; 2000 Oct; 54(4):494-8. PubMed ID: 11092623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Semidry acid hydrolysis of cellulose sustained by autoclaving for production of reducing sugars for bacterial biohydrogen generation from various cellulose feedstock.
    Morsy FM; Elbadry M; Elbahloul Y
    PeerJ; 2021; 9():e11244. PubMed ID: 33976974
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unique aspects of fiber degradation by the ruminal ethanologen Ruminococcus albus 7 revealed by physiological and transcriptomic analysis.
    Christopherson MR; Dawson JA; Stevenson DM; Cunningham AC; Bramhacharya S; Weimer PJ; Kendziorski C; Suen G
    BMC Genomics; 2014 Dec; 15(1):1066. PubMed ID: 25477200
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Response surface analysis of the effects of pH and dilution rate on Ruminococcus flavefaciens FD-1 in cellulose-fed continuous culture.
    Shi Y; Weimer PJ
    Appl Environ Microbiol; 1992 Aug; 58(8):2583-91. PubMed ID: 1514805
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative energetics of glucose and xylose metabolism in recombinant Zymomonas mobilis.
    Lawford HG; Rousseau JD
    Appl Biochem Biotechnol; 2000; 84-86():277-93. PubMed ID: 10849796
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glucose fermentation products in Ruminococcus albus grown in continuous culture with Vibrio succinogenes: changes caused by interspecies transfer of H 2 .
    Iannotti EL; Kafkewitz D; Wolin MJ; Bryant MP
    J Bacteriol; 1973 Jun; 114(3):1231-40. PubMed ID: 4351387
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Competition for cellulose among three predominant ruminal cellulolytic bacteria under substrate-excess and substrate-limited conditions.
    Shi Y; Odt CL; Weimer PJ
    Appl Environ Microbiol; 1997 Feb; 63(2):734-42. PubMed ID: 9023950
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DEGRADATION AND UTILIZATION OF ISOLATED HEMICELLULOSE BY PURE CULTURES OF CELLULOLYTIC RUMEN BACTERIA.
    DEHORITY BA
    J Bacteriol; 1965 Jun; 89(6):1515-20. PubMed ID: 14291590
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioenergetics and end-product regulation of Clostridium thermosaccharolyticum in response to nutrient limitation.
    Hill PW; Klapatch TR; Lynd LR
    Biotechnol Bioeng; 1993 Sep; 42(7):873-83. PubMed ID: 18613135
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cellulose utilization by Clostridium thermocellum: bioenergetics and hydrolysis product assimilation.
    Zhang YH; Lynd LR
    Proc Natl Acad Sci U S A; 2005 May; 102(20):7321-5. PubMed ID: 15883376
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy metabolism of Actinobacillus actinomycetemcomitans during anaerobic and microaerobic growth in low- and high-potassium continuous culture.
    Ohta H; Inoue T; Fukui K
    Microbiology (Reading); 2001 Sep; 147(Pt 9):2461-2468. PubMed ID: 11535786
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Testing alternative kinetic models for utilization of crystalline cellulose (Avicel) by batch cultures of Clostridium thermocellum.
    Holwerda EK; Lynd LR
    Biotechnol Bioeng; 2013 Sep; 110(9):2389-94. PubMed ID: 23568291
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.