These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 16347871)

  • 1. Diel Variation in Population Size and Ice Nucleation Activity of Pseudomonas syringae on Snap Bean Leaflets.
    Hirano SS; Upper CD
    Appl Environ Microbiol; 1989 Mar; 55(3):623-30. PubMed ID: 16347871
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ice nucleation temperature of individual leaves in relation to population sizes of ice nucleation active bacteria and frost injury.
    Hirano SS; Baker LS; Upper CD
    Plant Physiol; 1985 Feb; 77(2):259-65. PubMed ID: 16664039
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential effects of growth temperature on ice nuclei active at different temperatures that are produced by cells of Pseudomonas syringae.
    Gurian-Sherman D; Lindow SE
    Cryobiology; 1995 Apr; 32(2):129-38. PubMed ID: 7743815
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Competitive Exclusion of Epiphytic Bacteria by IcePseudomonas syringae Mutants.
    Lindow SE
    Appl Environ Microbiol; 1987 Oct; 53(10):2520-7. PubMed ID: 16347468
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamics, spread, and persistence of a single genotype of Pseudomonas syringae relative to those of its conspecifics on populations of snap bean leaflets.
    Hirano SS; Upper CD
    Appl Environ Microbiol; 1993 Apr; 59(4):1082-91. PubMed ID: 8476284
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Plant Species and Environmental Conditions on Ice Nucleation Activity of Pseudomonas syringae on Leaves.
    O'brien RD; Lindow SE
    Appl Environ Microbiol; 1988 Sep; 54(9):2281-6. PubMed ID: 16347741
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Raindrop Momentum Triggers Growth of Leaf-Associated Populations of Pseudomonas syringae on Field-Grown Snap Bean Plants.
    Hirano SS; Baker LS; Upper CD
    Appl Environ Microbiol; 1996 Jul; 62(7):2560-6. PubMed ID: 16535362
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Size of bacterial ice-nucleation sites measured in situ by radiation inactivation analysis.
    Govindarajan AG; Lindow SE
    Proc Natl Acad Sci U S A; 1988 Mar; 85(5):1334-8. PubMed ID: 16593912
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bacteria in the leaf ecosystem with emphasis on Pseudomonas syringae-a pathogen, ice nucleus, and epiphyte.
    Hirano SS; Upper CD
    Microbiol Mol Biol Rev; 2000 Sep; 64(3):624-53. PubMed ID: 10974129
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression of a bacterial ice nucleation gene in plants.
    Baertlein DA; Lindow SE; Panopoulos NJ; Lee SP; Mindrinos MN; Chen TH
    Plant Physiol; 1992 Dec; 100(4):1730-6. PubMed ID: 16653190
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Release of cell-free ice nuclei from Halomonas elongata expressing the ice nucleation gene inaZ of Pseudomonas syringae.
    Tegos G; Vargas C; Perysinakis A; Koukkou AI; Christogianni A; Nieto JJ; Ventosa A; Drainas C
    J Appl Microbiol; 2000 Nov; 89(5):785-92. PubMed ID: 11119152
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immunological characterization of ice nucleation proteins from Pseudomonas syringae, Pseudomonas fluorescens, and Erwinia herbicola.
    Deininger CA; Mueller GM; Wolber PK
    J Bacteriol; 1988 Feb; 170(2):669-75. PubMed ID: 3123461
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel method for identifying bacterial mutants with reduced epiphytic fitness.
    Lindow SE
    Appl Environ Microbiol; 1993 May; 59(5):1586-92. PubMed ID: 16348938
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flagellar Motility Confers Epiphytic Fitness Advantages upon Pseudomonas syringae.
    Haefele DM; Lindow SE
    Appl Environ Microbiol; 1987 Oct; 53(10):2528-33. PubMed ID: 16347469
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Survival of Ice Nucleation-Active and Genetically Engineered Non-Ice-Nucleating Pseudomonas syringae Strains after Freezing.
    Buttner MP; Amy PS
    Appl Environ Microbiol; 1989 Jul; 55(7):1690-4. PubMed ID: 16347963
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Ice Nucleation Gene from Pseudomonas syringae as a Sensitive Gene Reporter for Promoter Analysis in Zymomonas mobilis.
    Drainas C; Vartholomatos G; Panopoulos NJ
    Appl Environ Microbiol; 1995 Jan; 61(1):273-7. PubMed ID: 16534909
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Survival and ice nucleation activity of Pseudomonas syringae strains exposed to simulated high-altitude atmospheric conditions.
    de Araujo GG; Rodrigues F; Gonçalves FLT; Galante D
    Sci Rep; 2019 May; 9(1):7768. PubMed ID: 31123327
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Factors that Affect Spread of Pseudomonas syringae in the Phyllosphere.
    Upper CD; Hirano SS; Dodd KK; Clayton MK
    Phytopathology; 2003 Sep; 93(9):1082-92. PubMed ID: 18944091
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bacterial ice nucleation: a factor in frost injury to plants.
    Lindow SE; Arny DC; Upper CD
    Plant Physiol; 1982 Oct; 70(4):1084-9. PubMed ID: 16662618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Utility of microcosm studies for predicting phylloplane bacterium population sizes in the field.
    Kinkel LL; Wilson M; Lindow SE
    Appl Environ Microbiol; 1996 Sep; 62(9):3413-23. PubMed ID: 16535405
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.