These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 16347946)
21. SAL-TOL in vivo recombinant plasmid pKF439. Furukawa K; Miyazaki T; Tomizuka N J Bacteriol; 1985 Jun; 162(3):1325-8. PubMed ID: 2987190 [TBL] [Abstract][Full Text] [Related]
22. Effects of iron limitation on the degradation of toluene by Pseudomonas strains carrying the tol (pWWO) plasmid. Dinkla IJ; Gabor EM; Janssen DB Appl Environ Microbiol; 2001 Aug; 67(8):3406-12. PubMed ID: 11472911 [TBL] [Abstract][Full Text] [Related]
23. Transcriptional tradeoff between metabolic and stress-response programs in Pseudomonas putida KT2440 cells exposed to toluene. Domínguez-Cuevas P; González-Pastor JE; Marqués S; Ramos JL; de Lorenzo V J Biol Chem; 2006 Apr; 281(17):11981-91. PubMed ID: 16495222 [TBL] [Abstract][Full Text] [Related]
24. The TOL plasmid pWW0 xylN gene product from Pseudomonas putida is involved in m-xylene uptake. Kasai Y; Inoue J; Harayama S J Bacteriol; 2001 Nov; 183(22):6662-6. PubMed ID: 11673437 [TBL] [Abstract][Full Text] [Related]
25. Spontaneous deletions in the TOL plasmid pWW20 which give rise to the B3 regulatory mutants of Pseudomonas putida MT20. Pickup RW; Williams PA J Gen Microbiol; 1982 Jul; 128(7):1385-90. PubMed ID: 6288840 [TBL] [Abstract][Full Text] [Related]
26. TOL plasmid pWW15 contains two nonhomologous, independently regulated catechol 2,3-oxygenase genes. Keil H; Lebens MR; Williams PA J Bacteriol; 1985 Jul; 163(1):248-55. PubMed ID: 4008443 [TBL] [Abstract][Full Text] [Related]
27. Complete nucleotide sequence of the self-transmissible TOL plasmid pD2RT provides new insight into arrangement of toluene catabolic plasmids. Jutkina J; Hansen LH; Li L; Heinaru E; Vedler E; Jõesaar M; Heinaru A Plasmid; 2013 Nov; 70(3):393-405. PubMed ID: 24095800 [TBL] [Abstract][Full Text] [Related]
28. Expression of the TOL plasmid xylS gene in Pseudomonas putida occurs from a alpha 70-dependent promoter or from alpha 70- and alpha 54-dependent tandem promoters according to the compound used for growth. Gallegos MT; Marqués S; Ramos JL J Bacteriol; 1996 Apr; 178(8):2356-61. PubMed ID: 8636038 [TBL] [Abstract][Full Text] [Related]
29. Loss of the TOL meta-cleavage pathway functions of Pseudomonas putida strain PaW1 (pWW0) during growth on toluene. Brinkmann U; Ramos JL; Reineke W J Basic Microbiol; 1994; 34(5):303-9. PubMed ID: 7996396 [TBL] [Abstract][Full Text] [Related]
30. Characterization of a spontaneously occurring mutant of the TOL20 plasmid in Pseudomonas putida MT20: possible regulatory implications. Worsey MJ; Williams PA J Bacteriol; 1977 Jun; 130(3):1149-58. PubMed ID: 863853 [TBL] [Abstract][Full Text] [Related]
31. [Metabolic pathways responsible for consumption of aromatic hydrocarbons by microbial associations: molecular-genetic characterization]. Khomenkov VG; Shevelev AB; Zhukov VG; Kurlovich AE; Zagustina NA; Popov VO Prikl Biokhim Mikrobiol; 2005; 41(3):298-302. PubMed ID: 15977790 [TBL] [Abstract][Full Text] [Related]
32. Transcriptional control of the multiple catabolic pathways encoded on the TOL plasmid pWW53 of Pseudomonas putida MT53. Gallegos MT; Williams PA; Ramos JL J Bacteriol; 1997 Aug; 179(16):5024-9. PubMed ID: 9260942 [TBL] [Abstract][Full Text] [Related]
33. Excision and integration of degradative pathway genes from TOL plasmid pWW0. Jeenes DJ; Williams PA J Bacteriol; 1982 Apr; 150(1):188-94. PubMed ID: 7061392 [TBL] [Abstract][Full Text] [Related]
34. TOL plasmid-specified xylene oxygenase is a wide substrate range monooxygenase capable of olefin epoxidation. Wubbolts MG; Reuvekamp P; Witholt B Enzyme Microb Technol; 1994 Jul; 16(7):608-15. PubMed ID: 7764991 [TBL] [Abstract][Full Text] [Related]
35. Isolation and expansion of the catabolic potential of a Pseudomonas putida strain able to grow in the presence of high concentrations of aromatic hydrocarbons. Ramos JL; Duque E; Huertas MJ; Haïdour A J Bacteriol; 1995 Jul; 177(14):3911-6. PubMed ID: 7608060 [TBL] [Abstract][Full Text] [Related]
36. Plasmid gene organization: naphthalene/salicylate oxidation. Yen KM; Gunsalus IC Proc Natl Acad Sci U S A; 1982 Feb; 79(3):874-8. PubMed ID: 6278499 [TBL] [Abstract][Full Text] [Related]
37. XYL, a nonconjugative xylene-degradative plasmid in Pseudomonas Pxy. Friello DA; Mylroie JR; Gibson DT; Rogers JE; Chakrabarty AM J Bacteriol; 1976 Sep; 127(3):1217-24. PubMed ID: 956125 [TBL] [Abstract][Full Text] [Related]
38. Physical and functional mapping of two cointegrate plasmids derived from RP4 and TOL plasmid pDK1. Shaw LE; Williams PA J Gen Microbiol; 1988 Sep; 134(9):2463-74. PubMed ID: 3076182 [TBL] [Abstract][Full Text] [Related]
39. TOL plasmid pWW0 in constructed halobenzoate-degrading Pseudomonas strains: enzyme regulation and DNA structure. Jeenes DJ; Reineke W; Knackmuss HJ; Williams PA J Bacteriol; 1982 Apr; 150(1):180-7. PubMed ID: 7061391 [TBL] [Abstract][Full Text] [Related]
40. Combination of the tod and the tol pathways in redesigning a metabolic route of Pseudomonas putida for the mineralization of a benzene, toluene, and p-xylene mixture. Lee JY; Jung KH; Choi SH; Kim HS Appl Environ Microbiol; 1995 Jun; 61(6):2211-7. PubMed ID: 7793941 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]