These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 16347966)

  • 21. Syntrophomonas wolfei gen. nov. sp. nov., an Anaerobic, Syntrophic, Fatty Acid-Oxidizing Bacterium.
    McInerney MJ; Bryant MP; Hespell RB; Costerton JW
    Appl Environ Microbiol; 1981 Apr; 41(4):1029-39. PubMed ID: 16345745
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Metabolism of formate in Methanobacterium formicicum.
    Schauer NL; Ferry JG
    J Bacteriol; 1980 Jun; 142(3):800-7. PubMed ID: 6769911
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Concerted Metabolic Shifts Give New Insights Into the Syntrophic Mechanism Between Propionate-Fermenting
    Liu P; Lu Y
    Front Microbiol; 2018; 9():1551. PubMed ID: 30038609
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Novel strategy for relieving acid accumulation by enriching syntrophic associations of syntrophic fatty acid-oxidation bacteria and H
    Lv N; Zhao L; Wang R; Ning J; Pan X; Li C; Cai G; Zhu G
    Bioresour Technol; 2020 Oct; 313():123702. PubMed ID: 32615503
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Degradation of acetaldehyde and its precursors by Pelobacter carbinolicus and P. acetylenicus.
    Schmidt A; Frensch M; Schleheck D; Schink B; Müller N
    PLoS One; 2014; 9(12):e115902. PubMed ID: 25536080
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Formation of Fatty Acid-degrading, anaerobic granules by defined species.
    Wu W; Jain MK; Zeikus JG
    Appl Environ Microbiol; 1996 Jun; 62(6):2037-44. PubMed ID: 16535336
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Syntrophic growth of Desulfovibrio alaskensis requires genes for H2 and formate metabolism as well as those for flagellum and biofilm formation.
    Krumholz LR; Bradstock P; Sheik CS; Diao Y; Gazioglu O; Gorby Y; McInerney MJ
    Appl Environ Microbiol; 2015 Apr; 81(7):2339-48. PubMed ID: 25616787
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cysteine-Accelerated Methanogenic Propionate Degradation in Paddy Soil Enrichment.
    Zhuang L; Ma J; Tang J; Tang Z; Zhou S
    Microb Ecol; 2017 May; 73(4):916-924. PubMed ID: 27815590
    [TBL] [Abstract][Full Text] [Related]  

  • 29.
    Zheng S; Liu F; Wang B; Zhang Y; Lovley DR
    Environ Sci Technol; 2020 Dec; 54(23):15347-15354. PubMed ID: 33205658
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Phospholipid Fatty Acid Composition of the Syntrophic Anaerobic Bacterium Syntrophomonas wolfei.
    Henson JM; McInerney MJ; Beaty PS; Nickels J; White DC
    Appl Environ Microbiol; 1988 Jun; 54(6):1570-4. PubMed ID: 16347667
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparative Genomics of Syntrophic Branched-Chain Fatty Acid Degrading Bacteria.
    Narihiro T; Nobu MK; Tamaki H; Kamagata Y; Sekiguchi Y; Liu WT
    Microbes Environ; 2016 Sep; 31(3):288-92. PubMed ID: 27431485
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development of a Bioelectrochemical System as a Tool to Enrich H
    Guzman JJL; Sousa DZ; Angenent LT
    Front Microbiol; 2019; 10():110. PubMed ID: 30804906
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Accelerated glycerol fermentation in Escherichia coli using methanogenic formate consumption.
    Richter K; Gescher J
    Bioresour Technol; 2014 Jun; 162():389-91. PubMed ID: 24785787
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Long-term adaptation of Escherichia coli to methanogenic co-culture enhanced succinate production from crude glycerol.
    Kim NY; Kim SN; Kim OB
    J Ind Microbiol Biotechnol; 2018 Jan; 45(1):71-76. PubMed ID: 29230577
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The genome of Syntrophomonas wolfei: new insights into syntrophic metabolism and biohydrogen production.
    Sieber JR; Sims DR; Han C; Kim E; Lykidis A; Lapidus AL; McDonnald E; Rohlin L; Culley DE; Gunsalus R; McInerney MJ
    Environ Microbiol; 2010 Aug; 12(8):2289-301. PubMed ID: 21966920
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Magnetite particles triggering a faster and more robust syntrophic pathway of methanogenic propionate degradation.
    Cruz Viggi C; Rossetti S; Fazi S; Paiano P; Majone M; Aulenta F
    Environ Sci Technol; 2014 Jul; 48(13):7536-43. PubMed ID: 24901501
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Microbial interspecies interactions: recent findings in syntrophic consortia.
    Kouzuma A; Kato S; Watanabe K
    Front Microbiol; 2015; 6():477. PubMed ID: 26029201
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Energy-Conserving Enzyme Systems Active During Syntrophic Acetate Oxidation in the Thermophilic Bacterium
    Keller A; Schink B; Müller N
    Front Microbiol; 2019; 10():2785. PubMed ID: 31849917
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Composition and role of extracellular polymers in methanogenic granules.
    Veiga MC; Jain MK; Wu W; Hollingsworth RI; Zeikus JG
    Appl Environ Microbiol; 1997 Feb; 63(2):403-7. PubMed ID: 16535504
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Stimulatory Effect of Magnetite Nanoparticles on a Highly Enriched Butyrate-Oxidizing Consortium.
    Fu L; Song T; Zhang W; Zhang J; Lu Y
    Front Microbiol; 2018; 9():1480. PubMed ID: 30026737
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.