These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 16348037)

  • 1. Effect of growth rate and starvation-survival on cellular DNA, RNA, and protein of a psychrophilic marine bacterium.
    Moyer CL; Morita RY
    Appl Environ Microbiol; 1989 Oct; 55(10):2710-6. PubMed ID: 16348037
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of growth rate and starvation-survival on the viability and stability of a psychrophilic marine bacterium.
    Moyer CL; Morita RY
    Appl Environ Microbiol; 1989 May; 55(5):1122-7. PubMed ID: 16347905
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Starvation-survival processes of a marine Vibrio.
    Amy PS; Pauling C; Morita RY
    Appl Environ Microbiol; 1983 Mar; 45(3):1041-8. PubMed ID: 16346228
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recovery from nutrient starvation by a marine Vibrio sp.
    Amy PS; Pauling C; Morita RY
    Appl Environ Microbiol; 1983 May; 45(5):1685-90. PubMed ID: 6191662
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Starvation-induced thermal tolerance as a survival mechanism in a psychrophilic marine bacterium.
    Preyer JM; Oliver JD
    Appl Environ Microbiol; 1993 Aug; 59(8):2653-6. PubMed ID: 16349020
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Survival of a psychrophilic marine Vibrio under long-term nutrient starvation.
    Novitsky JA; Morita RY
    Appl Environ Microbiol; 1977 Mar; 33(3):635-41. PubMed ID: 16345219
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Starvation-Survival Physiological Studies of a Marine Pseudomonas sp.
    Kurath G; Morita RY
    Appl Environ Microbiol; 1983 Apr; 45(4):1206-11. PubMed ID: 16346265
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long-term nutrient starvation of continuously cultured (glucose-limited) Selenomonas ruminantium.
    Mink RW; Hespell RB
    J Bacteriol; 1981 Nov; 148(2):541-50. PubMed ID: 6170629
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Responses of Ruminococcus flavefaciens, a Ruminal Cellulolytic Species, to Nutrient Starvation.
    Wachenheim DE; Hespell RB
    Appl Environ Microbiol; 1985 Dec; 50(6):1361-7. PubMed ID: 16346939
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Morphological characterization of small cells resulting from nutrient starvation of a psychrophilic marine vibrio.
    Novitsky JA; Morita RY
    Appl Environ Microbiol; 1976 Oct; 32(4):617-22. PubMed ID: 984833
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in Viability, Cell Composition, and Enzyme Levels During Starvation of Continuously Cultured (Ammonia-Limited) Selenomonas ruminantium.
    Mink RW; Patterson JA; Hespell RB
    Appl Environ Microbiol; 1982 Oct; 44(4):913-22. PubMed ID: 16346116
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Starvation Response of the Marine Barophile CNPT-3.
    Rice SA; Oliver JD
    Appl Environ Microbiol; 1992 Aug; 58(8):2432-7. PubMed ID: 16348747
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective changes in the protein-turnover rates and nature of growth induced in trout liver by long-term starvation followed by re-feeding.
    Peragón J; Barroso JB; García-Salguero L; Aranda F; de la Higuera M; Lupiáñez JA
    Mol Cell Biochem; 1999 Nov; 201(1-2):1-10. PubMed ID: 10630616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Macromolecular synthesis and degradation in Arthrobacter during periods of nutrient deprivation.
    Scherer CG; Boylen CW
    J Bacteriol; 1977 Nov; 132(2):584-9. PubMed ID: 914778
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of growth rate and starvation on fluorescent in situ hybridization of Rhodopseudomonas palustris.
    Odaa Y; Slagmana S; Meijerb WG; Forneya LJ; Gottschala JC
    FEMS Microbiol Ecol; 2000 Jun; 32(3):205-213. PubMed ID: 10858579
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of previous growth conditions on the starvation-survival of Escherichia coli in seawater.
    García-Lara J; Martínez J; Vilamú M; Vives-Rego J
    J Gen Microbiol; 1993 Jul; 139(7):1425-31. PubMed ID: 8371106
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of intracellular polyglucose and prior growth rate on the survival of Fusobacterium nucleatum under starvation conditions.
    Rogers AH; Zilm PS
    Oral Microbiol Immunol; 1995 Apr; 10(2):119-21. PubMed ID: 7675517
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of maternal starvation on fetal tissue nucleic acid, plasma amino acid and growth hormone concentration in sheep.
    Schaefer AL; Krishnamurti CR; Heindze AM; Gopinath R
    Growth; 1984; 48(4):404-14. PubMed ID: 6085313
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Food Restrictions Affect the Larval Metamorphosis and Early Juvenile Performance in a Neotropical Mangrove Fiddler Crab (
    De Souza AS; Do Rosário TN; De Brito Simith DJ; Abrunhosa FA
    Biol Bull; 2019 Jun; 236(3):186-198. PubMed ID: 31167091
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ribosomes exist in large excess over the apparent demand for protein synthesis during carbon starvation in marine Vibrio sp. strain CCUG 15956.
    Flärdh K; Cohen PS; Kjelleberg S
    J Bacteriol; 1992 Nov; 174(21):6780-8. PubMed ID: 1383195
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.