These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 16348075)
1. Fermentation of Cellulosic Substrates in Batch and Continuous Culture by Clostridium thermocellum. Lynd LR; Grethlein HE; Wolkin RH Appl Environ Microbiol; 1989 Dec; 55(12):3131-9. PubMed ID: 16348075 [TBL] [Abstract][Full Text] [Related]
2. Hydrolysis of dilute acid pretreated mixed hardwood and purified microcrystalline cellulose by cell-free broth from Clostridium thermocellum. Lynd LR; Grethlein HE Biotechnol Bioeng; 1987 Jan; 29(1):92-100. PubMed ID: 18561134 [TBL] [Abstract][Full Text] [Related]
3. Regulation of cellulase synthesis in batch and continuous cultures of Clostridium thermocellum. Zhang YH; Lynd LR J Bacteriol; 2005 Jan; 187(1):99-106. PubMed ID: 15601693 [TBL] [Abstract][Full Text] [Related]
4. Ethanol Production by Thermophilic Bacteria: Fermentation of Cellulosic Substrates by Cocultures of Clostridium thermocellum and Clostridium thermohydrosulfuricum. Ng TK; Ben-Bassat A; Zeikus JG Appl Environ Microbiol; 1981 Jun; 41(6):1337-43. PubMed ID: 16345787 [TBL] [Abstract][Full Text] [Related]
5. Testing alternative kinetic models for utilization of crystalline cellulose (Avicel) by batch cultures of Clostridium thermocellum. Holwerda EK; Lynd LR Biotechnol Bioeng; 2013 Sep; 110(9):2389-94. PubMed ID: 23568291 [TBL] [Abstract][Full Text] [Related]
6. Conversion for Avicel and AFEX pretreated corn stover by Clostridium thermocellum and simultaneous saccharification and fermentation: insights into microbial conversion of pretreated cellulosic biomass. Shao X; Jin M; Guseva A; Liu C; Balan V; Hogsett D; Dale BE; Lynd L Bioresour Technol; 2011 Sep; 102(17):8040-5. PubMed ID: 21683579 [TBL] [Abstract][Full Text] [Related]
7. Cellulosic ethanol production via consolidated bioprocessing by a novel thermophilic anaerobic bacterium isolated from a Himalayan hot spring. Singh N; Mathur AS; Tuli DK; Gupta RP; Barrow CJ; Puri M Biotechnol Biofuels; 2017; 10():73. PubMed ID: 28344648 [TBL] [Abstract][Full Text] [Related]
8. Elimination of metabolic pathways to all traditional fermentation products increases ethanol yields in Clostridium thermocellum. Papanek B; Biswas R; Rydzak T; Guss AM Metab Eng; 2015 Nov; 32():49-54. PubMed ID: 26369438 [TBL] [Abstract][Full Text] [Related]
9. The enzymatic hydrolysis and fermentation of pretreated wood substrates. Saddler JN; Mes-Hartree M Biotechnol Adv; 1984; 2(2):161-81. PubMed ID: 14545694 [TBL] [Abstract][Full Text] [Related]
10. Adsorption of Clostridium thermocellum cellulases onto pretreated mixed hardwood, avicel, and lignin. Bernardez TD; Lyford K; Hogsett DA; Lynd LR Biotechnol Bioeng; 1993 Sep; 42(7):899-907. PubMed ID: 18613138 [TBL] [Abstract][Full Text] [Related]
11. Quantification of cell and cellulase mass concentrations during anaerobic cellulose fermentation: development of an enzyme-linked immunosorbent assay-based method with application to Clostridium thermocellum batch cultures. Zhang Y; Lynd LR Anal Chem; 2003 Jan; 75(2):219-27. PubMed ID: 12553755 [TBL] [Abstract][Full Text] [Related]
12. Continuous hydrogen production during fermentation of alpha-cellulose by the thermophillic bacterium Clostridium thermocellum. Magnusson L; Cicek N; Sparling R; Levin D Biotechnol Bioeng; 2009 Feb; 102(3):759-66. PubMed ID: 18828175 [TBL] [Abstract][Full Text] [Related]
13. Comparison of Extracellular Cellulase Activities of Clostridium thermocellum LQRI and Trichoderma reesei QM9414. Ng TK; Zeikus JG Appl Environ Microbiol; 1981 Aug; 42(2):231-40. PubMed ID: 16345823 [TBL] [Abstract][Full Text] [Related]
14. The exometabolome of Clostridium thermocellum reveals overflow metabolism at high cellulose loading. Holwerda EK; Thorne PG; Olson DG; Amador-Noguez D; Engle NL; Tschaplinski TJ; van Dijken JP; Lynd LR Biotechnol Biofuels; 2014; 7(1):155. PubMed ID: 25379055 [TBL] [Abstract][Full Text] [Related]
15. Saccharification of Complex Cellulosic Substrates by the Cellulase System from Clostridium thermocellum. Johnson EA; Sakajoh M; Halliwell G; Madia A; Demain AL Appl Environ Microbiol; 1982 May; 43(5):1125-32. PubMed ID: 16346009 [TBL] [Abstract][Full Text] [Related]
16. Kinetics and metabolism of cellulose degradation at high substrate concentrations in steady-state continuous cultures of Clostridium cellulolyticum on a chemically defined medium. Desvaux M; Guedon E; Petitdemange H Appl Environ Microbiol; 2001 Sep; 67(9):3837-45. PubMed ID: 11525975 [TBL] [Abstract][Full Text] [Related]
17. Fermentation of cellulose and cellobiose by Clostridium thermocellum in the absence of Methanobacterium thermoautotrophicum. Weimer PJ; Zeikus JG Appl Environ Microbiol; 1977 Feb; 33(2):289-97. PubMed ID: 848953 [TBL] [Abstract][Full Text] [Related]
18. Coculture with hemicellulose-fermenting microbes reverses inhibition of corn fiber solubilization by Clostridium thermocellum at elevated solids loadings. Beri D; Herring CD; Blahova S; Poudel S; Giannone RJ; Hettich RL; Lynd LR Biotechnol Biofuels; 2021 Jan; 14(1):24. PubMed ID: 33461608 [TBL] [Abstract][Full Text] [Related]
19. Influence of moisture content and cultivation duration on Clostridium thermocellum 27405 end-product formation in solid substrate cultivation on Avicel. Chinn MS; Nokes SE; Strobel HJ Bioresour Technol; 2008 May; 99(7):2664-71. PubMed ID: 17629479 [TBL] [Abstract][Full Text] [Related]