These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 16348226)

  • 21. Geobacter hydrogenophilus, Geobacter chapellei and Geobacter grbiciae, three new, strictly anaerobic, dissimilatory Fe(III)-reducers.
    Coates JD; Bhupathiraju VK; Achenbach LA; Mclnerney MJ; Lovley DR
    Int J Syst Evol Microbiol; 2001 Mar; 51(Pt 2):581-588. PubMed ID: 11321104
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dissimilatory Fe(III) and Mn(IV) reduction.
    Lovley DR
    Microbiol Rev; 1991 Jun; 55(2):259-87. PubMed ID: 1886521
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Benzene oxidation coupled to sulfate reduction.
    Lovley DR; Coates JD; Woodward JC; Phillips E
    Appl Environ Microbiol; 1995 Mar; 61(3):953-8. PubMed ID: 16534979
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Purification and characterization of toluene 2-monooxygenase from Burkholderia cepacia G4.
    Newman LM; Wackett LP
    Biochemistry; 1995 Oct; 34(43):14066-76. PubMed ID: 7578004
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Carbon and hydrogen isotope fractionation during anaerobic toluene oxidation by Geobacter metallireducens with different Fe(III) phases as terminal electron acceptors.
    Tobler NB; Hofstetter TB; Schwarzenbach RP
    Environ Sci Technol; 2008 Nov; 42(21):7786-92. PubMed ID: 19031861
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Anaerobic degradation of alkylated benzenes in denitrifying laboratory aquifer columns.
    Kuhn EP; Zeyer J; Eicher P; Schwarzenbach RP
    Appl Environ Microbiol; 1988 Feb; 54(2):490-6. PubMed ID: 3355134
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Anaerobic biooxidation of Fe(II) by Dechlorosoma suillum.
    Lack JG; Chaudhuri SK; Chakraborty R; Achenbach LA; Coates JD
    Microb Ecol; 2002 May; 43(4):424-31. PubMed ID: 11953812
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Anaerobic benzene oxidation via phenol in Geobacter metallireducens.
    Zhang T; Tremblay PL; Chaurasia AK; Smith JA; Bain TS; Lovley DR
    Appl Environ Microbiol; 2013 Dec; 79(24):7800-6. PubMed ID: 24096430
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Degradation of BTX by dissimilatory iron-reducing cultures.
    Botton S; Parsons JR
    Biodegradation; 2007 Jun; 18(3):371-81. PubMed ID: 17091352
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Anaerobic oxidation of p-cresol by a denitrifying bacterium.
    Bossert ID; Young LY
    Appl Environ Microbiol; 1986 Nov; 52(5):1117-22. PubMed ID: 3789714
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Geobacter soli sp. nov., a dissimilatory Fe(III)-reducing bacterium isolated from forest soil.
    Zhou S; Yang G; Lu Q; Wu M
    Int J Syst Evol Microbiol; 2014 Nov; 64(Pt 11):3786-3791. PubMed ID: 25139417
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Growth of iron(III)-reducing bacteria on clay minerals as the sole electron acceptor and comparison of growth yields on a variety of oxidized iron forms.
    Kostka JE; Dalton DD; Skelton H; Dollhopf S; Stucki JW
    Appl Environ Microbiol; 2002 Dec; 68(12):6256-62. PubMed ID: 12450850
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microbial communities associated with anaerobic benzene degradation in a petroleum-contaminated aquifer.
    Rooney-Varga JN; Anderson RT; Fraga JL; Ringelberg D; Lovley DR
    Appl Environ Microbiol; 1999 Jul; 65(7):3056-63. PubMed ID: 10388703
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Degradation of Monochlorinated and Nonchlorinated Aromatic Compounds under Iron-Reducing Conditions.
    Kazumi J; Haggblom MM; Young LY
    Appl Environ Microbiol; 1995 Nov; 61(11):4069-73. PubMed ID: 16535169
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Anaerobic mineralization of toluene by enriched sediments with quinones and humus as terminal electron acceptors.
    Cervantes FJ; Dijksma W; Duong-Dac T; Ivanova A; Lettinga G; Field JA
    Appl Environ Microbiol; 2001 Oct; 67(10):4471-8. PubMed ID: 11571145
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reduction of Fe(III), Mn(IV), and toxic metals at 100 degrees C by Pyrobaculum islandicum.
    Kashefi K; Lovley DR
    Appl Environ Microbiol; 2000 Mar; 66(3):1050-6. PubMed ID: 10698770
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Geovibrio ferrireducens, a phylogenetically distinct dissimilatory Fe(III)-reducing bacterium.
    Caccavo F; Coates JD; Rossello-Mora RA; Ludwig W; Schleifer KH; Lovley DR; McInerney MJ
    Arch Microbiol; 1996 Jun; 165(6):370-6. PubMed ID: 8661930
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Anaerobic degradation of cresols by denitrifying bacteria.
    Rudolphi A; Tschech A; Fuchs G
    Arch Microbiol; 1991; 155(3):238-48. PubMed ID: 1904702
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Anaerobic oxidation of p-cresol mediated by a partially purified methylhydroxylase from a denitrifying bacterium.
    Bossert ID; Whited G; Gibson DT; Young LY
    J Bacteriol; 1989 Jun; 171(6):2956-62. PubMed ID: 2722739
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Iron-mediated microbial oxidation and abiotic reduction of organic contaminants under anoxic conditions.
    Tobler NB; Hofstetter TB; Straub KL; Fontana D; Schwarzenbach RP
    Environ Sci Technol; 2007 Nov; 41(22):7765-72. PubMed ID: 18075086
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.