These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 16348226)

  • 41. Evidence for acetyl coenzyme A and cinnamoyl coenzyme A in the anaerobic toluene mineralization pathway in Azoarcus tolulyticus Tol-4.
    Chee-Sanford JC; Frost JW; Fries MR; Zhou J; Tiedje JM
    Appl Environ Microbiol; 1996 Mar; 62(3):964-73. PubMed ID: 8975623
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Use of Fe(III) as an electron acceptor to recover previously uncultured hyperthermophiles: isolation and characterization of Geothermobacterium ferrireducens gen. nov., sp. nov.
    Kashefi K; Holmes DE; Reysenbach AL; Lovley DR
    Appl Environ Microbiol; 2002 Apr; 68(4):1735-42. PubMed ID: 11916691
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Anaerobic degradation of phenol by pure cultures of newly isolated denitrifying pseudomonads.
    Tschech A; Fuchs G
    Arch Microbiol; 1987 Sep; 148(3):213-7. PubMed ID: 3675113
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Anaerobic degradation of monoaromatic hydrocarbons.
    Chakraborty R; Coates JD
    Appl Microbiol Biotechnol; 2004 May; 64(4):437-46. PubMed ID: 14735323
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Dissimilatory Fe(III) and Mn(IV) reduction.
    Lovley DR; Holmes DE; Nevin KP
    Adv Microb Physiol; 2004; 49():219-86. PubMed ID: 15518832
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Rhodoferax ferrireducens sp. nov., a psychrotolerant, facultatively anaerobic bacterium that oxidizes acetate with the reduction of Fe(III).
    Finneran KT; Johnsen CV; Lovley DR
    Int J Syst Evol Microbiol; 2003 May; 53(Pt 3):669-673. PubMed ID: 12807184
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Initiation of anaerobic degradation of p-cresol by formation of 4-hydroxybenzylsuccinate in desulfobacterium cetonicum.
    Müller JA; Galushko AS; Kappler A; Schink B
    J Bacteriol; 2001 Jan; 183(2):752-7. PubMed ID: 11133971
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Altering toluene 4-monooxygenase by active-site engineering for the synthesis of 3-methoxycatechol, methoxyhydroquinone, and methylhydroquinone.
    Tao Y; Fishman A; Bentley WE; Wood TK
    J Bacteriol; 2004 Jul; 186(14):4705-13. PubMed ID: 15231803
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The Proposed Molecular Mechanisms Used by Archaea for Fe(III) Reduction and Fe(II) Oxidation.
    Dong Y; Shan Y; Xia K; Shi L
    Front Microbiol; 2021; 12():690918. PubMed ID: 34276623
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Enhanced reduction of Fe(III) oxides and methyl orange by Klebsiella oxytoca in presence of anthraquinone-2-disulfonate.
    Yu L; Wang S; Tang QW; Cao MY; Li J; Yuan K; Wang P; Li WW
    Appl Microbiol Biotechnol; 2016 May; 100(10):4617-25. PubMed ID: 26762391
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Novel processes for anaerobic sulfate production from elemental sulfur by sulfate-reducing bacteria.
    Lovley DR; Phillips EJ
    Appl Environ Microbiol; 1994 Jul; 60(7):2394-9. PubMed ID: 16349323
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Anaerobic benzene oxidation coupled to nitrate reduction in pure culture by two strains of Dechloromonas.
    Coates JD; Chakraborty R; Lack JG; O'Connor SM; Cole KA; Bender KS; Achenbach LA
    Nature; 2001 Jun; 411(6841):1039-43. PubMed ID: 11429602
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Reduction of (per)chlorate by a novel organism isolated from paper mill waste.
    Bruce RA; Achenbach LA; Coates JD
    Environ Microbiol; 1999 Aug; 1(4):319-29. PubMed ID: 11207750
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Degradation of o-xylene and m-xylene by a novel sulfate-reducer belonging to the genus Desulfotomaculum.
    Morasch B; Schink B; Tebbe CC; Meckenstock RU
    Arch Microbiol; 2004 Jun; 181(6):407-17. PubMed ID: 15127183
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Biodegradation of trichloroethylene and involvement of an aromatic biodegradative pathway.
    Nelson MJ; Montgomery SO; Mahaffey WR; Pritchard PH
    Appl Environ Microbiol; 1987 May; 53(5):949-54. PubMed ID: 3606099
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Synergistic iron reduction and citrate dissimilation by Shewanella alga and Aeromonas veronii.
    Knight V; Caccavo F; Wudyka S; Blakemore R
    Arch Microbiol; 1996 Oct; 166(4):269-74. PubMed ID: 8824150
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A strategy for aromatic hydrocarbon bioremediation under anaerobic conditions and the impacts of ethanol: a microcosm study.
    Chen YD; Barker JF; Gui L
    J Contam Hydrol; 2008 Feb; 96(1-4):17-31. PubMed ID: 17964687
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Link between characteristics of Fe(III) oxides and critical role in enhancing anaerobic methanogenic degradation of complex organic compounds.
    Tang Y; Li Y; Zhang M; Xiong P; Liu L; Bao Y; Zhao Z
    Environ Res; 2021 Mar; 194():110498. PubMed ID: 33220246
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Mechanisms for accessing insoluble Fe(III) oxide during dissimilatory Fe(III) reduction by Geothrix fermentans.
    Nevin KP; Lovley DR
    Appl Environ Microbiol; 2002 May; 68(5):2294-9. PubMed ID: 11976100
    [TBL] [Abstract][Full Text] [Related]  

  • 60. MICROBIAL METABOLISM OF AROMATIC COMPOUNDS. I. DECOMPOSITION OF PHENOLIC COMPOUNDS AND AROMATIC HYDROCARBONS BY PHENOL-ADAPTED BACTERIA.
    TABAK HH; CHAMBERS CW; KABLER PW
    J Bacteriol; 1964 Apr; 87(4):910-9. PubMed ID: 14137630
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.