These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 16348226)

  • 61. Melanin production and use as a soluble electron shuttle for Fe(III) oxide reduction and as a terminal electron acceptor by Shewanella algae BrY.
    Turick CE; Tisa LS; Caccavo F
    Appl Environ Microbiol; 2002 May; 68(5):2436-44. PubMed ID: 11976119
    [TBL] [Abstract][Full Text] [Related]  

  • 62. The role of substrate binding pocket residues phenylalanine 176 and phenylalanine 196 on Pseudomonas sp. OX1 toluene o-xylene monooxygenase activity and regiospecificity.
    Sönmez B; Yanık-Yıldırım KC; Wood TK; Vardar-Schara G
    Biotechnol Bioeng; 2014 Aug; 111(8):1506-12. PubMed ID: 24519264
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Fe(III) and S0 reduction by Pelobacter carbinolicus.
    Lovley DR; Phillips EJ; Lonergan DJ; Widman PK
    Appl Environ Microbiol; 1995 Jun; 61(6):2132-8. PubMed ID: 7793935
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Iron Corrosion via Direct Metal-Microbe Electron Transfer.
    Tang HY; Holmes DE; Ueki T; Palacios PA; Lovley DR
    mBio; 2019 May; 10(3):. PubMed ID: 31088920
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Evidence for diverse oxidations in the catabolism of toluene by Rhodococcus rhodochrous strain OFS.
    Vanderberg LA; Krieger-Grumbine R; Taylor MN
    Appl Microbiol Biotechnol; 2000 Apr; 53(4):447-52. PubMed ID: 10803902
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Enzymes of anaerobic metabolism of phenolic compounds. 4-Hydroxybenzoyl-CoA reductase (dehydroxylating) from a denitrifying Pseudomonas species.
    Brackmann R; Fuchs G
    Eur J Biochem; 1993 Apr; 213(1):563-71. PubMed ID: 8477729
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Growth and Population Dynamics of the Anaerobic Fe(II)-Oxidizing and Nitrate-Reducing Enrichment Culture KS.
    Tominski C; Heyer H; Lösekann-Behrens T; Behrens S; Kappler A
    Appl Environ Microbiol; 2018 May; 84(9):. PubMed ID: 29500257
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Enrichment of dissimilatory Fe(III)-reducing bacteria from groundwater of the Siklós BTEX-contaminated site (Hungary).
    Farkas M; Szoboszlay S; Benedek T; Révész F; Veres PG; Kriszt B; Táncsics A
    Folia Microbiol (Praha); 2017 Jan; 62(1):63-71. PubMed ID: 27680983
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Anaerobic degradation of polycyclic aromatic hydrocarbons and alkanes in petroleum-contaminated marine harbor sediments.
    Coates JD; Woodward J; Allen J; Philp P; Lovley DR
    Appl Environ Microbiol; 1997 Sep; 63(9):3589-93. PubMed ID: 9341091
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Incorporation of Oxygen from Water into Toluene and Benzene during Anaerobic Fermentative Transformation.
    Vogel TM; Grbìc-Galìc D
    Appl Environ Microbiol; 1986 Jul; 52(1):200-2. PubMed ID: 16347109
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Anaerobic biodegradation ofPara-cresol under three reducing conditions.
    Häggblom MM; Rivera MD; Bossert ID; Rogers JE; Young LY
    Microb Ecol; 1990 Dec; 20(1):141-50. PubMed ID: 24193970
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Regiospecificity of two multicomponent monooxygenases from Pseudomonas stutzeri OX1: molecular basis for catabolic adaptation of this microorganism to methylated aromatic compounds.
    Cafaro V; Notomista E; Capasso P; Di Donato A
    Appl Environ Microbiol; 2005 Aug; 71(8):4736-43. PubMed ID: 16085870
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Fermentative toluene degradation in anaerobic defined syntrophic cocultures.
    Meckenstock RU
    FEMS Microbiol Lett; 1999 Aug; 177(1):67-73. PubMed ID: 10436924
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Brønsted acid-promoted C-H bond cleavage via electron transfer from toluene derivatives to a protonated nonheme iron(IV)-oxo complex with no kinetic isotope effect.
    Park J; Lee YM; Nam W; Fukuzumi S
    J Am Chem Soc; 2013 Apr; 135(13):5052-61. PubMed ID: 23528016
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Thermincola ferriacetica sp. nov., a new anaerobic, thermophilic, facultatively chemolithoautotrophic bacterium capable of dissimilatory Fe(III) reduction.
    Zavarzina DG; Sokolova TG; Tourova TP; Chernyh NA; Kostrikina NA; Bonch-Osmolovskaya EA
    Extremophiles; 2007 Jan; 11(1):1-7. PubMed ID: 16988758
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Desulfitobacterium aromaticivorans sp. nov. and Geobacter toluenoxydans sp. nov., iron-reducing bacteria capable of anaerobic degradation of monoaromatic hydrocarbons.
    Kunapuli U; Jahn MK; Lueders T; Geyer R; Heipieper HJ; Meckenstock RU
    Int J Syst Evol Microbiol; 2010 Mar; 60(Pt 3):686-695. PubMed ID: 19656942
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Identification of genes specifically required for the anaerobic metabolism of benzene in Geobacter metallireducens.
    Zhang T; Tremblay PL; Chaurasia AK; Smith JA; Bain TS; Lovley DR
    Front Microbiol; 2014; 5():245. PubMed ID: 24904558
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Multiple influences of nitrate on uranium solubility during bioremediation of uranium-contaminated subsurface sediments.
    Finneran KT; Housewright ME; Lovley DR
    Environ Microbiol; 2002 Sep; 4(9):510-6. PubMed ID: 12220407
    [TBL] [Abstract][Full Text] [Related]  

  • 79. [Influence of Dissimilatory Iron Reduction on the Speciation and Bioavailability of Heavy Metals in Soil].
    Si YB; Wang J
    Huan Jing Ke Xue; 2015 Sep; 36(9):3533-42. PubMed ID: 26717720
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A Membrane-Bound Cytochrome Enables
    Holmes DE; Ueki T; Tang HY; Zhou J; Smith JA; Chaput G; Lovley DR
    mBio; 2019 Aug; 10(4):. PubMed ID: 31431545
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.