These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 16348227)

  • 1. Rates of microbial metabolism in deep coastal plain aquifers.
    Chapelle FH; Lovley DR
    Appl Environ Microbiol; 1990 Jun; 56(6):1865-74. PubMed ID: 16348227
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison between geochemical and biological estimates of subsurface microbial activities.
    Phelps TJ; Murphy EM; Pfiffner SM; White DC
    Microb Ecol; 1994 Jan; 28(3):335-49. PubMed ID: 24186553
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microbial ecology of the terrestrial subsurface.
    Ghiorse WC; Wilson JT
    Adv Appl Microbiol; 1988; 33():107-72. PubMed ID: 3041739
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physiological diversity and distributions of heterotrophic bacteria in deep cretaceous sediments of the atlantic coastal plain.
    Fredrickson JK; Balkwill DL; Zachara JM; Li SM; Brockman FJ; Simmons MA
    Appl Environ Microbiol; 1991 Feb; 57(2):402-11. PubMed ID: 16348407
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Geochemical and Microbiological Evidence for Microbial Methane Production in Deep Aquifers of the Cretaceous Accretionary Prism.
    Matsushita M; Magara K; Sato Y; Shinzato N; Kimura H
    Microbes Environ; 2018 Jul; 33(2):205-213. PubMed ID: 29899169
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Potential for CH
    Matsushita M; Ishikawa S; Magara K; Sato Y; Kimura H
    Microbes Environ; 2020; 35(1):. PubMed ID: 31932538
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Filtration and transport of Bacillus subtilis spores and the F-RNA phage MS2 in a coarse alluvial gravel aquifer: implications in the estimation of setback distances.
    Pang L; Close M; Goltz M; Noonan M; Sinton L
    J Contam Hydrol; 2005 Apr; 77(3):165-94. PubMed ID: 15763354
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A geochemical approach to determine sources and movement of saline groundwater in a coastal aquifer.
    Anders R; Mendez GO; Futa K; Danskin WR
    Ground Water; 2014; 52(5):756-68. PubMed ID: 24032352
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biogeochemical phosphorus cycling in groundwater ecosystems - Insights from South and Southeast Asian floodplain and delta aquifers.
    Neidhardt H; Schoeckle D; Schleinitz A; Eiche E; Berner Z; Tram PTK; Lan VM; Viet PH; Biswas A; Majumder S; Chatterjee D; Oelmann Y; Berg M
    Sci Total Environ; 2018 Dec; 644():1357-1370. PubMed ID: 30743848
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microbial Reduction of Fe(III) and SO
    Lee JH; Lee BJ
    Microb Ecol; 2018 Jul; 76(1):182-191. PubMed ID: 29177753
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mobilization of arsenic and other naturally occurring contaminants in groundwater of the Main Ethiopian Rift aquifers.
    Rango T; Vengosh A; Dwyer G; Bianchini G
    Water Res; 2013 Oct; 47(15):5801-18. PubMed ID: 23899878
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential depth distribution of microbial function and putative symbionts through sediment-hosted aquifers in the deep terrestrial subsurface.
    Probst AJ; Ladd B; Jarett JK; Geller-McGrath DE; Sieber CMK; Emerson JB; Anantharaman K; Thomas BC; Malmstrom RR; Stieglmeier M; Klingl A; Woyke T; Ryan MC; Banfield JF
    Nat Microbiol; 2018 Mar; 3(3):328-336. PubMed ID: 29379208
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heterotrophic microbial activity in shallow aquifer sediments of Long Island, New York.
    Kazumi J; Capone DG
    Microb Ecol; 1994 Jul; 28(1):19-37. PubMed ID: 24190392
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impacts of sediment compaction on iodine enrichment in deep aquifers of the North China Plain.
    Xue X; Li J; Xie X; Qian K; Wang Y
    Water Res; 2019 Aug; 159():480-489. PubMed ID: 31128472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sources and controls for the mobility of arsenic in oxidizing groundwaters from loess-type sediments in arid/semi-arid dry climates - evidence from the Chaco-Pampean plain (Argentina).
    Nicolli HB; Bundschuh J; García JW; Falcón CM; Jean JS
    Water Res; 2010 Nov; 44(19):5589-604. PubMed ID: 21035830
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of urbanization on hydrochemical evolution of groundwater and on unsaturated-zone gas composition in the coastal city of Tel Aviv, Israel.
    Zilberbrand M; Rosenthal E; Shachnai E
    J Contam Hydrol; 2001 Aug; 50(3-4):175-208. PubMed ID: 11523324
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Linking microbial heterotrophic activity and sediment lithology in oxic, oligotrophic sub-seafloor sediments of the north atlantic ocean.
    Picard A; Ferdelman TG
    Front Microbiol; 2011; 2():263. PubMed ID: 22207869
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical controls on abiotic and biotic release of geogenic arsenic from Pleistocene aquifer sediments to groundwater.
    Gillispie EC; Andujar E; Polizzotto ML
    Environ Sci Process Impacts; 2016 Aug; 18(8):1090-103. PubMed ID: 27463026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trends and transformation of nutrients and pesticides in a coastal plain aquifer system, United States.
    Denver JM; Tesoriero AJ; Barbaro JR
    J Environ Qual; 2010; 39(1):154-67. PubMed ID: 20048303
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potential impacts of leakage from deep CO2 geosequestration on overlying freshwater aquifers.
    Little MG; Jackson RB
    Environ Sci Technol; 2010 Dec; 44(23):9225-32. PubMed ID: 20977267
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.