These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 16348320)

  • 1. Biosynthesis of Poly-beta-Hydroxyalkanoates from Pentoses by Pseudomonas pseudoflava.
    Bertrand JL; Ramsay BA; Ramsay JA; Chavarie C
    Appl Environ Microbiol; 1990 Oct; 56(10):3133-8. PubMed ID: 16348320
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of poly-(beta-hydroxybutyric-co-beta-hydroxyvaleric) acids.
    Ramsay BA; Lomaliza K; Chavarie C; Dubé B; Bataille P; Ramsay JA
    Appl Environ Microbiol; 1990 Jul; 56(7):2093-8. PubMed ID: 2117877
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of Poly-beta-Hydroxyalkanoic Acid by Pseudomonas cepacia.
    Ramsay BA; Ramsay JA; Cooper DG
    Appl Environ Microbiol; 1989 Mar; 55(3):584-9. PubMed ID: 16347867
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lipid production in batch and fed-batch cultures of Rhodosporidium toruloides from 5 and 6 carbon carbohydrates.
    Wiebe MG; Koivuranta K; Penttilä M; Ruohonen L
    BMC Biotechnol; 2012 May; 12():26. PubMed ID: 22646156
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cultivation strategies for production of (R)-3-hydroxybutyric acid from simultaneous consumption of glucose, xylose and arabinose by Escherichia coli.
    Jarmander J; Belotserkovsky J; Sjöberg G; Guevara-Martínez M; Pérez-Zabaleta M; Quillaguamán J; Larsson G
    Microb Cell Fact; 2015 Apr; 14():51. PubMed ID: 25889969
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fed-batch polyhydroxybutyrate production by Paraburkholderia sacchari from a ternary mixture of glucose, xylose and arabinose.
    Li M; Wilkins MR
    Bioprocess Biosyst Eng; 2021 Jan; 44(1):185-193. PubMed ID: 32895870
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Utilization of agricultural residues for poly(3-hydroxybutyrate) production by Halomonas boliviensis LC1.
    Van-Thuoc D; Quillaguamán J; Mamo G; Mattiasson B
    J Appl Microbiol; 2008 Feb; 104(2):420-8. PubMed ID: 17887984
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biosynthesis and properties of polyhydroxyalkanoates synthesized from mixed C
    Blunt W; Shah P; Vasquez V; Ye M; Doyle C; Liu Y; Saeidlou S; Monteil-Rivera F
    N Biotechnol; 2023 Nov; 77():40-49. PubMed ID: 37390901
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recombinant Ralstonia eutropha engineered to utilize xylose and its use for the production of poly(3-hydroxybutyrate) from sunflower stalk hydrolysate solution.
    Kim HS; Oh YH; Jang YA; Kang KH; David Y; Yu JH; Song BK; Choi JI; Chang YK; Joo JC; Park SJ
    Microb Cell Fact; 2016 Jun; 15():95. PubMed ID: 27260327
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance testing of Zymomonas mobilis metabolically engineered for cofermentation of glucose, xylose, and arabinose.
    Lawford HG; Rousseau JD
    Appl Biochem Biotechnol; 2002; 98-100():429-48. PubMed ID: 12018270
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Forest soil bacteria able to produce homo and copolymers of polyhydroxyalkanoates from several pure and waste carbon sources.
    Clifton-García B; González-Reynoso O; Robledo-Ortiz JR; Villafaña-Rojas J; González-García Y
    Lett Appl Microbiol; 2020 Apr; 70(4):300-309. PubMed ID: 31891417
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biotransformation of d-Xylose-Rich Rice Husk Hydrolysate by a Rice Paddy Soil Bacterium,
    Lee JY; Kim MH; Kim JS; Yun BR; Kim DY; Chung CW
    Biomolecules; 2023 Jan; 13(1):. PubMed ID: 36671516
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Engineering of a D-xylose metabolic pathway in eutropha W50].
    Liu K; Liu G; Zhang Y; Ding J; Weng W
    Wei Sheng Wu Xue Bao; 2014 Jan; 54(1):42-52. PubMed ID: 24783853
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Co-utilization of glucose and xylose for the production of poly-β-hydroxybutyrate (PHB) by Sphingomonas sanxanigenens NX02.
    Ming Y; Li G; Shi Z; Zhao X; Zhao Y; Gao G; Ma T; Wu M
    Microb Cell Fact; 2023 Aug; 22(1):162. PubMed ID: 37635215
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polyhydroxyalkanoate copolymers from forest biomass.
    Keenan TM; Nakas JP; Tanenbaum SW
    J Ind Microbiol Biotechnol; 2006 Jul; 33(7):616-26. PubMed ID: 16761168
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High cell density cultivation of Pseudomonas oleovorans: growth and production of poly (3-hydroxyalkanoates) in two-liquid phase batch and fed-batch systems.
    Preusting H; van Houten R; Hoefs A; van Langenberghe EK; Favre-Bulle O; Witholt B
    Biotechnol Bioeng; 1993 Mar; 41(5):550-6. PubMed ID: 18609586
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of poly(3-hydroxybutyric acid) by fed-batch culture of Alcaligenes eutrophus with glucose concentration control.
    Kim BS; Lee SC; Lee SY; Chang HN; Chang YK; Woo SI
    Biotechnol Bioeng; 1994 Apr; 43(9):892-8. PubMed ID: 18615882
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of oxygen limitation in the formation of poly- -hydroxybutyrate during batch and continuous culture of Azotobacter beijerinckii.
    Senior PJ; Beech GA; Ritchie GA; Dawes EA
    Biochem J; 1972 Aug; 128(5):1193-201. PubMed ID: 4643700
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbial Production of Poly-beta-Hydroxybutyric Acid from d-Xylose and Lactose by Pseudomonas cepacia.
    Young FK; Kastner JR; May SW
    Appl Environ Microbiol; 1994 Nov; 60(11):4195-8. PubMed ID: 16349449
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Poly(3-Hydroxybutyrate) Production with High Productivity and High Polymer Content by a Fed-Batch Culture of Alcaligenes latus under Nitrogen Limitation.
    Wang F; Lee SY
    Appl Environ Microbiol; 1997 Sep; 63(9):3703-6. PubMed ID: 16535699
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.