BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 16348445)

  • 1. Isolation and characterization of a subsurface bacterium capable of growth on toluene, naphthalene, and other aromatic compounds.
    Fredrickson JK; Brockman FJ; Workman DJ; Li SW; Stevens TO
    Appl Environ Microbiol; 1991 Mar; 57(3):796-803. PubMed ID: 16348445
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Induction of aromatic catabolic activity in Sphingomonas aromaticivorans strain F199.
    Romine MF; Fredrickson JK; Li SM
    J Ind Microbiol Biotechnol; 1999 Oct; 23(4-5):303-313. PubMed ID: 11423947
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aromatic-degrading Sphingomonas isolates from the deep subsurface.
    Fredrickson JK; Balkwill DL; Drake GR; Romine MF; Ringelberg DB; White DC
    Appl Environ Microbiol; 1995 May; 61(5):1917-22. PubMed ID: 7544095
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ecology, physiology, and phylogeny of deep subsurface Sphingomonas sp.
    Fredrickson JK; Balkwill DL; Romine MF; Shi T
    J Ind Microbiol Biotechnol; 1999 Oct; 23(4-5):273-283. PubMed ID: 11423944
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Loss of the toluene-xylene catabolic genes of TOL plasmid pWW0 during growth of Pseudomonas putida on benzoate is due to a selective growth advantage of 'cured' segregants.
    Williams PA; Taylor SD; Gibb LE
    J Gen Microbiol; 1988 Jul; 134(7):2039-48. PubMed ID: 3246596
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Importance of Gram-positive naphthalene-degrading bacteria in oil-contaminated tropical marine sediments.
    Zhuang WQ; Tay JH; Maszenan AM; Krumholz LR; Tay ST
    Lett Appl Microbiol; 2003; 36(4):251-7. PubMed ID: 12641721
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The use of a solid adsorber resin for enrichment of bacteria with toxic substrates and to identify metabolites: degradation of naphthalene, O-, and m-xylene by sulfate-reducing bacteria.
    Morasch B; Annweiler E; Warthmann RJ; Meckenstock RU
    J Microbiol Methods; 2001 Mar; 44(2):183-91. PubMed ID: 11165347
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physical mapping and characterization of a catabolic plasmid from the deep-subsurface bacterium Sphingomonas sp. strain F199.
    Stillwell LC; Thurston SJ; Schneider RP; Romine MF; Fredrickson JK; Saffer JD
    J Bacteriol; 1995 Aug; 177(15):4537-9. PubMed ID: 7635838
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbial in situ degradation of aromatic hydrocarbons in a contaminated aquifer monitored by carbon isotope fractionation.
    Richnow HH; Annweiler E; Michaelis W; Meckenstock RU
    J Contam Hydrol; 2003 Aug; 65(1-2):101-20. PubMed ID: 12855203
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation and characterization of a thermotolerant bacterium Ralstonia sp. strain PHS1 that degrades benzene, toluene, ethylbenzene, and o-xylene.
    Lee SK; Lee SB
    Appl Microbiol Biotechnol; 2001 Jul; 56(1-2):270-5. PubMed ID: 11499943
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physiological and genetic comparison of two aromatic hydrocarbon-degrading Sphingomonas strains.
    Shuttleworth KL; Sung J; Kim E; Cerniglia CE
    Mol Cells; 2000 Apr; 10(2):199-205. PubMed ID: 10850662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Host Range of the Conjugative Transfer System of IncP-9 Naphthalene-Catabolic Plasmid NAH7 and Characterization of Its oriT Region and Relaxase.
    Kishida K; Inoue K; Ohtsubo Y; Nagata Y; Tsuda M
    Appl Environ Microbiol; 2017 Jan; 83(1):. PubMed ID: 27742684
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diversity and correlation of specific aromatic hydrocarbon biodegradation capabilities.
    Gülensoy N; Alvarez PJ
    Biodegradation; 1999; 10(5):331-40. PubMed ID: 10870549
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation and expansion of the catabolic potential of a Pseudomonas putida strain able to grow in the presence of high concentrations of aromatic hydrocarbons.
    Ramos JL; Duque E; Huertas MJ; Haïdour A
    J Bacteriol; 1995 Jul; 177(14):3911-6. PubMed ID: 7608060
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catabolic and Genetic Diversity of Degradative Bacteria from Fuel-Hydrocarbon Contaminated Aquifers.
    Stapleton RD; Bright NG; Sayler GS
    Microb Ecol; 2000 Apr; 39(3):211-221. PubMed ID: 12035098
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genomic and functional analysis of the IncP-9 naphthalene-catabolic plasmid NAH7 and its transposon Tn4655 suggests catabolic gene spread by a tyrosine recombinase.
    Sota M; Yano H; Ono A; Miyazaki R; Ishii H; Genka H; Top EM; Tsuda M
    J Bacteriol; 2006 Jun; 188(11):4057-67. PubMed ID: 16707697
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasmid-mediated mineralization of naphthalene, phenanthrene, and anthracene.
    Sanseverino J; Applegate BM; King JM; Sayler GS
    Appl Environ Microbiol; 1993 Jun; 59(6):1931-7. PubMed ID: 8328809
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the naphthalene-degrading bacterium, Rhodococcus opacus M213.
    Uz I; Duan YP; Ogram A
    FEMS Microbiol Lett; 2000 Apr; 185(2):231-8. PubMed ID: 10754253
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation and characterization of a novel toluene-degrading, sulfate-reducing bacterium.
    Beller HR; Spormann AM; Sharma PK; Cole JR; Reinhard M
    Appl Environ Microbiol; 1996 Apr; 62(4):1188-96. PubMed ID: 8919780
    [TBL] [Abstract][Full Text] [Related]  

  • 20. BTEX- and naphthalene-degrading bacterium Microbacterium esteraromaticum strain SBS1-7 isolated from estuarine sediment.
    Wongbunmak A; Khiawjan S; Suphantharika M; Pongtharangkul T
    J Hazard Mater; 2017 Oct; 339():82-90. PubMed ID: 28628786
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.