BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 16348445)

  • 21. Transposon and spontaneous deletion mutants of plasmid-borne genes encoding polycyclic aromatic hydrocarbon degradation by a strain of Pseudomonas fluorescens.
    Foght JM; Westlake DW
    Biodegradation; 1996 Aug; 7(4):353-66. PubMed ID: 8987893
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microbial metabolism of polycyclic aromatic hydrocarbons: isolation and characterization of a pyrene-degrading bacterium.
    Heitkamp MA; Franklin W; Cerniglia CE
    Appl Environ Microbiol; 1988 Oct; 54(10):2549-55. PubMed ID: 3202633
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genome Analysis of Naphthalene-Degrading
    Kim J; Park W
    J Microbiol Biotechnol; 2018 Feb; 28(2):330-337. PubMed ID: 29169219
    [TBL] [Abstract][Full Text] [Related]  

  • 24. nahR, encoding a LysR-type transcriptional regulator, is highly conserved among naphthalene-degrading bacteria isolated from a coal tar waste-contaminated site and in extracted community DNA.
    Park W; Padmanabhan P; Padmanabhan S; Zylstra GJ; Madsen EL
    Microbiology (Reading); 2002 Aug; 148(Pt 8):2319-2329. PubMed ID: 12177326
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structural and replicative diversity of large plasmids from sphingomonads that degrade polycyclic aromatic compounds and xenobiotics.
    Basta T; Buerger S; Stolz A
    Microbiology (Reading); 2005 Jun; 151(Pt 6):2025-2037. PubMed ID: 15942009
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genetics of naphthalene catabolism in pseudomonads.
    Yen KM; Serdar CM
    Crit Rev Microbiol; 1988; 15(3):247-68. PubMed ID: 3288442
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cloning of the genes for and characterization of the early stages of toluene and o-xylene catabolism in Pseudomonas stutzeri OX1.
    Bertoni G; Bolognese F; Galli E; Barbieri P
    Appl Environ Microbiol; 1996 Oct; 62(10):3704-11. PubMed ID: 8837426
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biodegradation of petroleum hydrocarbons by psychrotrophic Pseudomonas strains possessing both alkane (alk) and naphthalene (nah) catabolic pathways.
    Whyte LG; BourbonniƩre L; Greer CW
    Appl Environ Microbiol; 1997 Sep; 63(9):3719-23. PubMed ID: 9293024
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Metabolism of dibenzo-p-dioxin and chlorinated dibenzo-p-dioxin by a gram-positive bacterium, Rhodococcus opacus SAO101.
    Kimura N; Urushigawa Y
    J Biosci Bioeng; 2001; 92(2):138-43. PubMed ID: 16233073
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Bacteria--degraders of polycyclic aromatic hydrocarbons, isolated from soil and bottom sediments in salt-mining areas].
    Plotnikova EG; Altyntseva OV; Kosheleva IA; Puntus IF; Filonov AE; Gavrish EIu; Demakov VA; Boronin AM
    Mikrobiologiia; 2001; 70(1):61-9. PubMed ID: 11338839
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Broad substrate specificity of naphthalene- and biphenyl-utilizing bacteria.
    Baldwin BR; Mesarch MB; Nies L
    Appl Microbiol Biotechnol; 2000 Jun; 53(6):748-53. PubMed ID: 10919338
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Physiological diversity and distributions of heterotrophic bacteria in deep cretaceous sediments of the atlantic coastal plain.
    Fredrickson JK; Balkwill DL; Zachara JM; Li SM; Brockman FJ; Simmons MA
    Appl Environ Microbiol; 1991 Feb; 57(2):402-11. PubMed ID: 16348407
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Application of nitrate to enhance biodegradation of gasoline components in soil by indigenous microorganisms under anoxic condition.
    Yang SC; Song Y; Wang D; Wei WX; Yang Y; Men B; Li JB
    Environ Technol; 2016; 37(9):1045-53. PubMed ID: 26508265
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Complete sequence of a 184-kilobase catabolic plasmid from Sphingomonas aromaticivorans F199.
    Romine MF; Stillwell LC; Wong KK; Thurston SJ; Sisk EC; Sensen C; Gaasterland T; Fredrickson JK; Saffer JD
    J Bacteriol; 1999 Mar; 181(5):1585-602. PubMed ID: 10049392
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Natural horizontal transfer of a naphthalene dioxygenase gene between bacteria native to a coal tar-contaminated field site.
    Herrick JB; Stuart-Keil KG; Ghiorse WC; Madsen EL
    Appl Environ Microbiol; 1997 Jun; 63(6):2330-7. PubMed ID: 9172352
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Analyses of polycyclic aromatic hydrocarbon-degrading bacteria isolated from contaminated soils.
    Ahn Y; Sanseverino J; Sayler GS
    Biodegradation; 1999 Apr; 10(2):149-57. PubMed ID: 10466202
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Whole genome characterization and phenanthrene catabolic pathway of a biofilm forming marine bacterium Pseudomonas aeruginosa PFL-P1.
    Mahto KU; Das S
    Ecotoxicol Environ Saf; 2020 Dec; 206():111087. PubMed ID: 32871516
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phototrophic utilization of toluene under anoxic conditions by a new strain of blastochloris sulfoviridis.
    Zengler K; Heider J; Rossello-Mora R; Widdel F
    Arch Microbiol; 1999 Oct; 172(4):204-12. PubMed ID: 10525736
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Common induction and regulation of biphenyl, xylene/toluene, and salicylate catabolism in Pseudomonas paucimobilis.
    Furukawa K; Simon JR; Chakrabarty AM
    J Bacteriol; 1983 Jun; 154(3):1356-62. PubMed ID: 6343352
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Horizontal transfer of catabolic plasmids in the process of naphthalene biodegradation in model soil systems].
    Akhmetov LI; Filonov AE; Puntus IF; Kosheleva IA; Nechaeva IA; Yonge DR; Petersen JN; Boronin AM
    Mikrobiologiia; 2008; 77(1):29-39. PubMed ID: 18365719
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.