These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 16348471)

  • 1. Aerobic microbial cometabolism of benzothiophene and 3-methylbenzothiophene.
    Fedorak PM; Grbić-Galić D
    Appl Environ Microbiol; 1991 Apr; 57(4):932-40. PubMed ID: 16348471
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biodegradation of benzothiophene sulfones by a filamentous bacterium.
    Bressler DC; Leskiw BK; Fedorak PM
    Can J Microbiol; 1999 May; 45(5):360-8. PubMed ID: 10446711
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microbially Mediated Formation of Benzonaphthothiophenes from Benzo[b]thiophenes.
    Kropp KG; Gonçalves JA; Andersson JT; Fedorak PM
    Appl Environ Microbiol; 1994 Oct; 60(10):3624-31. PubMed ID: 16349409
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sulfur from benzothiophene and alkylbenzothiophenes supports growth of Rhodococcus sp. strain JVH1.
    Kirkwood KM; Andersson JT; Fedorak PM; Foght JM; Gray MR
    Biodegradation; 2007 Oct; 18(5):541-9. PubMed ID: 17091342
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aerobic co-metabolism of sulfur, nitrogen and oxygen heterocycles by three marine bacterial consortia.
    Meade JD; Hellou J; Patel TR
    J Basic Microbiol; 2002; 42(1):19-36. PubMed ID: 11925758
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Desulfurization of benzothiophene by the Gram-negative bacterium, Sinorhizobium sp. KT55.
    Tanaka Y; Onaka T; Matsui T; Maruhashi K; Kurane R
    Curr Microbiol; 2001 Sep; 43(3):187-91. PubMed ID: 11400068
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bacterial transformations of naphthothiophenes.
    Kropp KG; Andersson JT; Fedorak PM
    Appl Environ Microbiol; 1997 Sep; 63(9):3463-73. PubMed ID: 16535687
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biodegradation of Various Aromatic Compounds by Enriched Bacterial Cultures: Part B--Nitrogen-, Sulfur-, and Oxygen-Containing Heterocyclic Aromatic Compounds.
    Oberoi AS; Philip L; Bhallamudi SM
    Appl Biochem Biotechnol; 2015 Jul; 176(6):1746-69. PubMed ID: 26054616
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbial transformation of benzothiophenes, with carbazole as the auxiliary substrate, by Sphingomonas sp. strain XLDN2-5.
    Gai Z; Yu B; Wang X; Deng Z; Xu P
    Microbiology (Reading); 2008 Dec; 154(Pt 12):3804-3812. PubMed ID: 19047748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biodesulfurization of naphthothiophene and benzothiophene through selective cleavage of carbon-sulfur bonds by Rhodococcus sp. strain WU-K2R.
    Kirimura K; Furuya T; Sato R; Ishii Y; Kino K; Usami S
    Appl Environ Microbiol; 2002 Aug; 68(8):3867-72. PubMed ID: 12147483
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transformations of six isomers of dimethylbenzothiophene by three Pseudomonas strains.
    Kropp KG; Saftić S; Andersson JT; Fedorak PM
    Biodegradation; 1996 Jun; 7(3):203-21. PubMed ID: 8782392
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biodegradation of dibenzothiophene and 4,6-dimethyldibenzothiophene by Sphingomonas paucimobilis strain TZS-7.
    Lu J; Nakajima-Kambe T; Shigeno T; Ohbo A; Nomura N; Nakahara T
    J Biosci Bioeng; 1999; 88(3):293-9. PubMed ID: 16232614
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bacterial transformations of 1,2,3,4-tetrahydrodibenzothiophene and dibenzothiophene.
    Kropp KG; Andersson JT; Fedorak PM
    Appl Environ Microbiol; 1997 Aug; 63(8):3032-42. PubMed ID: 16535665
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anaerobic cometabolic transformation of polycyclic and heterocyclic aromatic hydrocarbons: evidence from laboratory and field studies.
    Safinowski M; Griebler C; Meckenstock RU
    Environ Sci Technol; 2006 Jul; 40(13):4165-73. PubMed ID: 16858866
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anaerobic cometabolic conversion of benzothiophene by a sulfate-reducing enrichment culture and in a tar-oil-contaminated aquifer.
    Annweiler E; Michaelis W; Meckenstock RU
    Appl Environ Microbiol; 2001 Nov; 67(11):5077-83. PubMed ID: 11679329
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gas chromatography combined with mass spectrometry for the identification of organic sulfur compounds in shellfish and fish.
    Ogata M; Miyake Y
    J Chromatogr Sci; 1980 Nov; 18(11):594-605. PubMed ID: 7451632
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Benzo[b]thiophene desulfurization by Gordonia rubropertinctus strain T08.
    Matsui T; Onaka T; Maruhashi K; Kurane R
    Appl Microbiol Biotechnol; 2001 Oct; 57(1-2):212-5. PubMed ID: 11693923
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutagenicity and chemical analysis of aliphatic and aromatic fractions of Prudhoe Bay crude oil and fuel oil no. 2.
    Ellenton JA; Hallett DJ
    J Toxicol Environ Health; 1981; 8(5-6):959-72. PubMed ID: 7200152
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biocatalytic desulfurization of thiophenic compounds and crude oil by newly isolated bacteria.
    Mohamed Mel-S; Al-Yacoub ZH; Vedakumar JV
    Front Microbiol; 2015; 6():112. PubMed ID: 25762990
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxidation of naphthenoaromatic and methyl-substituted aromatic compounds by naphthalene 1,2-dioxygenase.
    Selifonov SA; Grifoll M; Eaton RW; Chapman PJ
    Appl Environ Microbiol; 1996 Feb; 62(2):507-14. PubMed ID: 16535238
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.