These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 16348492)
1. Subgroups of the Cowpea Miscellany: Symbiotic Specificity within Bradyrhizobium spp. for Vigna unguiculata, Phaseolus lunatus, Arachis hypogaea, and Macroptilium atropurpureum. Thies JE; Bohlool BB; Singleton PW Appl Environ Microbiol; 1991 May; 57(5):1540-5. PubMed ID: 16348492 [TBL] [Abstract][Full Text] [Related]
2. Phylogeny of bradyrhizobia from Chinese cowpea miscellany inferred from 16S rRNA, atpD, glnII, and 16S-23S intergenic spacer sequences. Zhang S; Xie F; Yang J; Li Y Can J Microbiol; 2011 Apr; 57(4):316-27. PubMed ID: 21491983 [TBL] [Abstract][Full Text] [Related]
3. Development of an Illumina-based analysis method to study bradyrhizobial population structure-case study on nitrogen-fixing rhizobia associating with cowpea or peanut. Le Quéré A; Diop S; Dehaene N; Niang D; Do Rego F; Fall S; Neyra M; Karsova-Wade T Appl Microbiol Biotechnol; 2021 Sep; 105(18):6943-6957. PubMed ID: 34453562 [TBL] [Abstract][Full Text] [Related]
4. Influence of the size of indigenous rhizobial populations on establishment and symbiotic performance of introduced rhizobia on field-grown legumes. Thies JE; Singleton PW; Bohlool BB Appl Environ Microbiol; 1991 Jan; 57(1):19-28. PubMed ID: 16348393 [TBL] [Abstract][Full Text] [Related]
5. Gibberellins and the Legume-Rhizobium Symbiosis : III. Quantification of Gibberellins from Stems and Nodules of Lima Bean and Cowpea. Dobert RC; Rood SB; Zanewich K; Blevins DG Plant Physiol; 1992 Dec; 100(4):1994-2001. PubMed ID: 16653229 [TBL] [Abstract][Full Text] [Related]
6. Scrutiny of NolA and NodD1 Regulatory Roles in Symbiotic Compatibility Unveils New Insights into Bradyrhizobium guangxiense CCBAU53363 Interacting with Peanut (Arachis hypogaea) and Mung Bean (Vigna radiata). Shang JY; Zhang P; Jia YW; Lu YN; Wu Y; Ji S; Chen L; Wang ET; Chen WX; Sui XH Microbiol Spectr; 2023 Feb; 11(1):e0209622. PubMed ID: 36475917 [TBL] [Abstract][Full Text] [Related]
7. Native bradyrhizobia from Los Tuxtlas in Mexico are symbionts of Phaseolus lunatus (Lima bean). López-López A; Negrete-Yankelevich S; Rogel MA; Ormeño-Orrillo E; Martínez J; Martínez-Romero E Syst Appl Microbiol; 2013 Feb; 36(1):33-8. PubMed ID: 23280323 [TBL] [Abstract][Full Text] [Related]
8. Genetic diversity and symbiotic effectiveness of Bradyrhizobium strains nodulating selected annual grain legumes growing in Ethiopia. Degefu T; Wolde-Meskel E; Rasche F Int J Syst Evol Microbiol; 2018 Jan; 68(1):449-460. PubMed ID: 29143730 [TBL] [Abstract][Full Text] [Related]
9. Nodulation, Nitrogen Fixation, and Hydrogen Oxidation by Pigeon Pea Bradyrhizobium spp. in Symbiotic Association with Pigeon Pea, Cowpea, and Soybean. Nautiyal CS; Hegde SV; van Berkum P Appl Environ Microbiol; 1988 Jan; 54(1):94-97. PubMed ID: 16347542 [TBL] [Abstract][Full Text] [Related]
10. Potential of Rice Stubble as a Reservoir of Bradyrhizobial Inoculum in Rice-Legume Crop Rotation. Piromyou P; Greetatorn T; Teamtisong K; Tittabutr P; Boonkerd N; Teaumroong N Appl Environ Microbiol; 2017 Nov; 83(22):. PubMed ID: 28916558 [No Abstract] [Full Text] [Related]
11. Recognition of leguminous hosts by a promiscuous Rhizobium strain. Shantharam S; Wong PP Appl Environ Microbiol; 1982 Mar; 43(3):677-85. PubMed ID: 16345975 [TBL] [Abstract][Full Text] [Related]
12. Molecular diversity of native bradyrhizobia isolated from lima bean (Phaseolus lunatus L.) in Peru. Ormeño-Orrillo E; Vinuesa P; Zúñiga-Dávila D; Martínez-Romero E Syst Appl Microbiol; 2006 Apr; 29(3):253-62. PubMed ID: 16564961 [TBL] [Abstract][Full Text] [Related]
13. A novel symbiovar (aegeanense) of the genus Ensifer nodulates Vigna unguiculata. Tampakaki AP; Fotiadis CT; Ntatsi G; Savvas D J Sci Food Agric; 2017 Oct; 97(13):4314-4325. PubMed ID: 28220509 [TBL] [Abstract][Full Text] [Related]
14. Rhizobium symbiotic genes required for nodulation of legume and nonlegume hosts. Marvel DJ; Torrey JG; Ausubel FM Proc Natl Acad Sci U S A; 1987 Mar; 84(5):1319-23. PubMed ID: 16593814 [TBL] [Abstract][Full Text] [Related]
15. Diversity and Efficiency of Rhizobia from a Revegetated Area and Hotspot-Phytophysiognomies Affected by Iron Mining as Indicators of Rehabilitation and Biotechnological Potential. Freitas Costa P; Oliveira Silva A; Azarias Guimarães A; Resende de Assis LL; Rufini M; de Paiva Barbosa L; Soares de Carvalho T; de Souza Moreira FM Curr Microbiol; 2022 Dec; 80(1):40. PubMed ID: 36534172 [TBL] [Abstract][Full Text] [Related]
16. Growth and Yield Responses of Cowpea to Inoculation and Phosphorus Fertilization in Different Environments. Kyei-Boahen S; Savala CEN; Chikoye D; Abaidoo R Front Plant Sci; 2017; 8():646. PubMed ID: 28515729 [TBL] [Abstract][Full Text] [Related]
17. Host Range and Symbiotic Effectiveness of N Woliy K; Degefu T; Frostegård Å Front Microbiol; 2019; 10():2746. PubMed ID: 31849890 [TBL] [Abstract][Full Text] [Related]
18. Diversity among Bradyrhizobium isolates nodulating yardlong bean and sunnhemp in Guam. You Z; Marutani M; Borthakur D J Appl Microbiol; 2002; 93(4):577-84. PubMed ID: 12234340 [TBL] [Abstract][Full Text] [Related]
19. Preferential association of endophytic bradyrhizobia with different rice cultivars and its implications for rice endophyte evolution. Piromyou P; Greetatorn T; Teamtisong K; Okubo T; Shinoda R; Nuntakij A; Tittabutr P; Boonkerd N; Minamisawa K; Teaumroong N Appl Environ Microbiol; 2015 May; 81(9):3049-61. PubMed ID: 25710371 [TBL] [Abstract][Full Text] [Related]
20. Evaluation of MALDI-TOF mass spectrometry for the competitiveness analysis of selected indigenous cowpea (Vigna unguiculata L. Walp.) Bradyrhizobium strains from Kenya. Ndungu SM; Messmer MM; Ziegler D; Thuita M; Vanlauwe B; Frossard E; Thonar C Appl Microbiol Biotechnol; 2018 Jun; 102(12):5265-5278. PubMed ID: 29696334 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]