These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 16348564)

  • 21. Methanol bioconversion in Methylotuvimicrobium buryatense 5GB1C through self-cycling fermentation.
    Tan Y; Stein LY; Sauvageau D
    Bioprocess Biosyst Eng; 2023 Jul; 46(7):969-980. PubMed ID: 37160768
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biosynthesis of cyclodextrin glucosyltransferase by the free and immobilized cells of Bacillus cereus NRC7 in batch and continuous cultures.
    Abdel-Naby MA; El-Refai HA; Abdel-Fattah AF
    J Appl Microbiol; 2011 Nov; 111(5):1129-37. PubMed ID: 21883731
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Involvement of a protein tyrosine kinase in production of the polymeric bioemulsifier emulsan from the oil-degrading strain Acinetobacter lwoffii RAG-1.
    Nakar D; Gutnick DL
    J Bacteriol; 2003 Feb; 185(3):1001-9. PubMed ID: 12533476
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Improved bioethanol productivity through gas flow rate-driven self-cycling fermentation.
    Wang J; Chae M; Bressler DC; Sauvageau D
    Biotechnol Biofuels; 2020; 13():14. PubMed ID: 31998407
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of emulsan on biodegradation of crude oil by pure and mixed bacterial cultures.
    Foght JM; Gutnick DL; Westlake DW
    Appl Environ Microbiol; 1989 Jan; 55(1):36-42. PubMed ID: 16347832
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Localization of emulsan-like polymers associated with the cell surface of acinetobacter calcoaceticus.
    Pines O; Bayer EA; Gutnick DL
    J Bacteriol; 1983 May; 154(2):893-905. PubMed ID: 6687725
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Antibiotic production by Streptomyces aureofaciens using self-cycling fermentation.
    Zenaitis MG; Cooper DG
    Biotechnol Bioeng; 1994 Dec; 44(11):1331-6. PubMed ID: 18618645
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A unique polypeptide from the C-terminus of the exocellular esterase of Acinetobacter venetianus RAG-1 modulates the emulsifying activity of the polymeric bioemulsifier apoemulsan.
    Bach H; Gutnick DL
    Appl Microbiol Biotechnol; 2006 Jun; 71(2):177-83. PubMed ID: 16237525
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Self-cycling operation increases productivity of recombinant protein in Escherichia coli.
    Storms ZJ; Brown T; Sauvageau D; Cooper DG
    Biotechnol Bioeng; 2012 Sep; 109(9):2262-70. PubMed ID: 22407770
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The influence of self-cycling fermentation long- and short-cycle schemes on Saccharomyces cerevisiae and Escherichia coli.
    Tan Y; Stein LY; Sauvageau D
    Sci Rep; 2022 Aug; 12(1):13154. PubMed ID: 35915208
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Oil-degrading Acinetobacter strain RAG-1 and strains described as 'Acinetobacter venetianus sp. nov.' belong to the same genomic species.
    Vaneechoutte M; Tjernberg I; Baldi F; Pepi M; Fani R; Sullivan ER; van der Toorn J; Dijkshoorn L
    Res Microbiol; 1999; 150(1):69-73. PubMed ID: 10096135
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Specific binding of a bacteriophage at a hydrocarbon-water interface.
    Pines O; Gutnick D
    J Bacteriol; 1984 Jan; 157(1):179-83. PubMed ID: 6546308
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Immunochemical identification of the major cell surface agglutinogen of Acinetobacter calcoaceticus RAG-92.
    Bayer EA; Skutelsky E; Goldman S; Rosenberg E; Gutnick DL
    J Gen Microbiol; 1983 Apr; 129(4):1109-19. PubMed ID: 6688443
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Exploring small-scale chemostats to scale up microbial processes: 3-hydroxypropionic acid production in S. cerevisiae.
    Lis AV; Schneider K; Weber J; Keasling JD; Jensen MK; Klein T
    Microb Cell Fact; 2019 Mar; 18(1):50. PubMed ID: 30857529
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Growth and exopolysaccharide production during free and immobilized cell chemostat culture of Lactobacillus rhamnosus RW-9595M.
    Bergmaier D; Champagne CP; Lacroix C
    J Appl Microbiol; 2005; 98(2):272-84. PubMed ID: 15659181
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of growth rate and nutrient limitation on the composition and biomass yield of Acinetobacter calcoaceticus.
    Abbott BJ; Laskin AI; McCoy CJ
    Appl Microbiol; 1974 Jul; 28(1):58-63. PubMed ID: 4844268
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Incorporation of 2-hydroxyl fatty acids by Acinetobacter calcoaceticus RAG-1 to tailor emulsan structure.
    Zhang J; Gorkovenko A; Gross RA; Allen AL; Kaplan D
    Int J Biol Macromol; 1997 Feb; 20(1):9-21. PubMed ID: 9110181
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bioengineered emulsans from Acinetobacter calcoaceticusRAG-1 transposon mutants.
    Johri AK; Blank W; Kaplan DL
    Appl Microbiol Biotechnol; 2002 Jul; 59(2-3):217-23. PubMed ID: 12111149
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Automated fed-batch fermentation with feed-back controls based on dissolved oxygen (DO) and pH for production of DNA vaccines.
    Chen W; Graham C; Ciccarelli RB
    J Ind Microbiol Biotechnol; 1997 Jan; 18(1):43-8. PubMed ID: 9079287
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.