These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 16348647)
1. Effects of Temperature on Two Psychrophilic Ecotypes of a Heterotrophic Nanoflagellate, Paraphysomonas imperforata. Choi JW; Peters F Appl Environ Microbiol; 1992 Feb; 58(2):593-9. PubMed ID: 16348647 [TBL] [Abstract][Full Text] [Related]
2. Effects of temperature on growth rate and gross growth efficiency of an Antarctic bacterivorous protist. Rose JM; Vora NM; Countway PD; Gast RJ; Caron DA ISME J; 2009 Feb; 3(2):252-60. PubMed ID: 18843301 [TBL] [Abstract][Full Text] [Related]
3. Feeding and growth of the marine heterotrophic nanoflagellates, Procryptobia sorokini and Paraphysomonas imperforata on a bacterium, Pseudoalteromonas sp. with an inducible defence against grazing. Tophøj J; Wollenberg RD; Sondergaard TE; Eriksen NT PLoS One; 2018; 13(4):e0195935. PubMed ID: 29652905 [TBL] [Abstract][Full Text] [Related]
4. Grazing Characteristics and Growth Efficiencies at Two Different Temperatures for Three Nanoflagellates Fed with Vibrio Bacteria at Three Different Concentrations. Ishigaki T; Sleigh MA Microb Ecol; 2001 Apr; 41(3):264-271. PubMed ID: 11391464 [TBL] [Abstract][Full Text] [Related]
5. Effects of temperature and turbulence on the predator-prey interactions between a heterotrophic flagellate and a marine bacterium. Delaney MP Microb Ecol; 2003 Mar; 45(3):218-25. PubMed ID: 12658520 [TBL] [Abstract][Full Text] [Related]
6. Effect of temperature on growth, respiration, and nutrient regeneration by an omnivorous microflagellate. Caron DA; Goldman JC; Dennett MR Appl Environ Microbiol; 1986 Dec; 52(6):1340-7. PubMed ID: 16347239 [TBL] [Abstract][Full Text] [Related]
7. Cool tadpoles from Arctic environments waste fewer nutrients - high gross growth efficiencies lead to low consumer-mediated nutrient recycling in the North. Liess A; Guo J; Lind MI; Rowe O J Anim Ecol; 2015 Nov; 84(6):1744-56. PubMed ID: 26239271 [TBL] [Abstract][Full Text] [Related]
8. Effect of temperature on sulphate reduction, growth rate and growth yield in five psychrophilic sulphate-reducing bacteria from Arctic sediments. Knoblauch C; Jørgensen BB Environ Microbiol; 1999 Oct; 1(5):457-67. PubMed ID: 11207766 [TBL] [Abstract][Full Text] [Related]
9. Bacterial growth in the cold: evidence for an enhanced substrate requirement. Wiebe WJ; Sheldon WM; Pomeroy LR Appl Environ Microbiol; 1992 Jan; 58(1):359-64. PubMed ID: 16348634 [TBL] [Abstract][Full Text] [Related]
10. Diversity and cold-active hydrolytic enzymes of culturable bacteria associated with Arctic sea ice, Spitzbergen. Groudieva T; Kambourova M; Yusef H; Royter M; Grote R; Trinks H; Antranikian G Extremophiles; 2004 Dec; 8(6):475-88. PubMed ID: 15252724 [TBL] [Abstract][Full Text] [Related]
11. [Phylogenetic diversity and cold-adaptive hydrolytic enzymes of culturable psychrophilic bacteria associated with sea ice from high latitude ocean, Artic]. Yu Y; Li HR; Chen B; Zeng YX; He JF Wei Sheng Wu Xue Bao; 2006 Apr; 46(2):184-90. PubMed ID: 16736573 [TBL] [Abstract][Full Text] [Related]
12. Warming and CO Vaqué D; Lara E; Arrieta JM; Holding J; Sà EL; Hendriks IE; Coello-Camba A; Alvarez M; Agustí S; Wassmann PF; Duarte CM Front Microbiol; 2019; 10():494. PubMed ID: 30949141 [TBL] [Abstract][Full Text] [Related]
13. Effect of temperature and prey type on nutrient regeneration by an antarctic bacterivorous protist. Rose JM; Vora NM; Caron DA Microb Ecol; 2008 Jul; 56(1):101-11. PubMed ID: 17932714 [TBL] [Abstract][Full Text] [Related]
14. Community size and metabolic rates of psychrophilic sulfate-reducing bacteria in Arctic marine sediments. Knoblauch C; Jørgensen BB; Harder J Appl Environ Microbiol; 1999 Sep; 65(9):4230-3. PubMed ID: 10473441 [TBL] [Abstract][Full Text] [Related]
15. Dynamic characteristics of Prochlorococcus and Synechococcus consumption by bacterivorous nanoflagellates. Christaki U; Courties C; Karayanni H; Giannakourou A; Maravelias C; Kormas KA; Lebaron P Microb Ecol; 2002 Apr; 43(3):341-52. PubMed ID: 12037612 [TBL] [Abstract][Full Text] [Related]
16. The impact of temperature change on the activity and community composition of sulfate-reducing bacteria in arctic versus temperate marine sediments. Robador A; Brüchert V; Jørgensen BB Environ Microbiol; 2009 Jul; 11(7):1692-703. PubMed ID: 19292778 [TBL] [Abstract][Full Text] [Related]
17. Psychrophilic versus psychrotolerant bacteria--occurrence and significance in polar and temperate marine habitats. Helmke E; Weyland H Cell Mol Biol (Noisy-le-grand); 2004 Jul; 50(5):553-61. PubMed ID: 15559972 [TBL] [Abstract][Full Text] [Related]
18. Mixotrophy in the marine red-tide cryptophyte Teleaulax amphioxeia and ingestion and grazing impact of cryptophytes on natural populations of bacteria in Korean coastal waters. Yoo YD; Seong KA; Jeong HJ; Yih W; Rho JR; Nam SW; Kim HS Harmful Algae; 2017 Sep; 68():105-117. PubMed ID: 28962973 [TBL] [Abstract][Full Text] [Related]
19. Differential grazing of two heterotrophic nanoflagellates on marine Synechococcus strains. Zwirglmaier K; Spence E; Zubkov MV; Scanlan DJ; Mann NH Environ Microbiol; 2009 Jul; 11(7):1767-76. PubMed ID: 19508559 [TBL] [Abstract][Full Text] [Related]
20. Feeding by the heterotrophic nanoflagellate Katablepharis remigera on algal prey and its nationwide distribution in Korea. Ok JH; Jeong HJ; Lim AS; Lee SY; Kim SJ Harmful Algae; 2018 Apr; 74():30-45. PubMed ID: 29724341 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]