BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 16348670)

  • 1. Metabolic Engineering To Produce Tyrosine or Phenylalanine in a Tryptophan-Producing Corynebacterium glutamicum Strain.
    Ikeda M; Katsumata R
    Appl Environ Microbiol; 1992 Mar; 58(3):781-5. PubMed ID: 16348670
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stepwise metabolic engineering of Corynebacterium glutamicum for the production of phenylalanine.
    Kataoka N; Matsutani M; Matsushita K; Yakushi T
    J Gen Appl Microbiol; 2023 Jun; 69(1):11-23. PubMed ID: 35989300
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Altered prephenate dehydratase in phenylalanine-excreting mutants of Brevibacterium flavum.
    Shiio I; Sugimoto S
    J Biochem; 1976 Jan; 79(1):173-83. PubMed ID: 7552
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic and biochemical identification of the chorismate mutase from Corynebacterium glutamicum.
    Li PP; Liu YJ; Liu SJ
    Microbiology (Reading); 2009 Oct; 155(Pt 10):3382-3391. PubMed ID: 19589834
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phenylalanine production by metabolically engineered Corynebacterium glutamicum with the pheA gene of Escherichia coli.
    Ikeda M; Ozaki A; Katsumata R
    Appl Microbiol Biotechnol; 1993 Jun; 39(3):318-23. PubMed ID: 7763713
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Channel-shuttle mechanism for the regulation of phenylalanine and tyrosine synthesis at a metabolic branch point in Pseudomonas aeruginosa.
    Calhoun DH; Pierson DL; Jensen RA
    J Bacteriol; 1973 Jan; 113(1):241-51. PubMed ID: 4631707
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integration of E. coli aroG-pheA tandem genes into Corynebacterium glutamicum tyrA locus and its effect on L-phenylalanine biosynthesis.
    Liu DX; Fan CS; Tao JH; Liang GX; Gao SE; Wang HJ; Li X; Song DX
    World J Gastroenterol; 2004 Dec; 10(24):3683-7. PubMed ID: 15534933
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fermentative production of tryptophan by a stable recombinant strain of Corynebacterium glutamicum with a modified serine-biosynthetic pathway.
    Ikeda M; Nakanishi K; Kino K; Katsumata R
    Biosci Biotechnol Biochem; 1994 Apr; 58(4):674-8. PubMed ID: 7764859
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic engineering with adaptive laboratory evolution for phenylalanine production by Corynebacterium glutamicum.
    Tachikawa Y; Okuno M; Itoh T; Hirasawa T
    J Biosci Bioeng; 2024 May; 137(5):344-353. PubMed ID: 38365536
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production of l-Phenylalanine from Starch by Analog-Resistant Mutants of Bacillus polymyxa.
    Shetty K; Crawford DL; Pometto AL
    Appl Environ Microbiol; 1986 Oct; 52(4):637-43. PubMed ID: 16347159
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of metabolic branch points of aromatic amino acid biosynthesis in Pichia guilliermondii.
    Koll P; Bode R; Birnbaum D
    J Basic Microbiol; 1988; 28(9-10):619-27. PubMed ID: 2907046
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The aromatic amino acid pathway branches at L-arogenate in Euglena gracilis.
    Byng GS; Whitaker RJ; Shapiro CL; Jensen RA
    Mol Cell Biol; 1981 May; 1(5):426-38. PubMed ID: 6152855
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of the aromatic pathway in the cyanobacterium Synechococcus sp. strain Pcc6301 (Anacystis nidulans).
    Hall GC; Flick MB; Jensen RA
    J Bacteriol; 1983 Jan; 153(1):423-8. PubMed ID: 6129240
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic Engineering of Shikimic Acid-Producing
    Sato N; Kishida M; Nakano M; Hirata Y; Tanaka T
    Front Bioeng Biotechnol; 2020; 8():569406. PubMed ID: 33015020
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzymological basis for growth inhibition by L-phenylalanine in the cyanobacterium Synechocystis sp. 29108.
    Hall GC; Jensen RA
    J Bacteriol; 1980 Dec; 144(3):1034-42. PubMed ID: 6108316
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clues from Xanthomonas campestris about the evolution of aromatic biosynthesis and its regulation.
    Whitaker RJ; Berry A; Byng GS; Fiske MJ; Jensen RA
    J Mol Evol; 1984-1985; 21(2):139-49. PubMed ID: 6152589
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hyperproduction of tryptophan by Corynebacterium glutamicum with the modified pentose phosphate pathway.
    Ikeda M; Katsumata R
    Appl Environ Microbiol; 1999 Jun; 65(6):2497-502. PubMed ID: 10347033
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of phenylalanine biosynthesis in Rhodotorula glutinis.
    Fiske MJ; Kane JF
    J Bacteriol; 1984 Nov; 160(2):676-81. PubMed ID: 6150022
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of enzyme synthesis in the aromatic amino acid pathway of Bacillus subtilus.
    Nester EW; Jensen RA; Nasser DS
    J Bacteriol; 1969 Jan; 97(1):83-90. PubMed ID: 4974400
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rational engineering of the shikimate and related pathways in Corynebacterium glutamicum for 4-hydroxybenzoate production.
    Syukur Purwanto H; Kang MS; Ferrer L; Han SS; Lee JY; Kim HS; Lee JH
    J Biotechnol; 2018 Sep; 282():92-100. PubMed ID: 30031819
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.